Ubuntu LLaMA-Factory实战

一、Ubuntu LLaMA-Factory实战安装:

CUDA 安装

CUDA 是由 NVIDIA 创建的一个并行计算平台和编程模型,它让开发者可以使用 NVIDIA 的 GPU 进行高性能的并行计算。

首先,在 https://developer.nvidia.com/cuda-gpus 查看您的 GPU 是否支持CUDA

  1. 保证当前 Linux 版本支持CUDA. 在命令行中输入 uname -m && cat /etc/*release,应当看到类似的输出
复制代码
x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=22.04
  1. 检查是否安装了 gcc . 在命令行中输入 gcc --version ,应当看到类似的输出
复制代码
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
  1. 在以下网址下载所需的 CUDA,这里推荐12.2版本。 https://developer.nvidia.com/cuda-gpus 注意需要根据上述输出选择正确版本

如果您之前安装过 CUDA(例如为12.1版本),需要先使用 sudo /usr/local/cuda-12.1/bin/cuda-uninstaller 卸载。如果该命令无法运行,可以直接:

复制代码
sudo rm -r /usr/local/cuda-12.1/
sudo apt clean && sudo apt autoclean

卸载完成后运行以下命令并根据提示继续安装:

复制代码
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
sudo sh cuda_12.2.0_535.54.03_linux.run

注意:在确定 CUDA 自带驱动版本与 GPU 是否兼容之前,建议取消 Driver 的安装。

完成后输入 nvcc -V 检查是否出现对应的版本号,若出现则安装完成。

LLaMA-Factory 安装

在安装 LLaMA-Factory 之前,请确保您安装了下列依赖:

运行以下指令以安装 LLaMA-Factory 及其依赖:

复制代码
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"

如果出现环境冲突,请尝试使用 pip install --no-deps -e . 解决

LLaMA-Factory 校验

bash 复制代码
llamafactory-cli version

完成安装后,可以通过使用 llamafactory-cli version 来快速校验安装是否成功

如果您能成功看到类似下面的界面,就说明安装成功了。

注意:如果失败执行下面的代码

你遇到的问题是由于当前安装的 Keras 版本为 Keras 3,但 transformers 库还不支持这个版本。具体来说,报错提示需要你安装一个向后兼容的 tf-keras 包,来解决这个不兼容问题。

解决方案如下:

(1)运行以下命令,安装 tf-keras 兼容包:

复制代码
pip install tf-keras

(2)如果问题依然存在,可能还需要锁定 Keras 版本为 2.x 系列。你可以尝试卸载现有的 Keras 版本,并安装旧版本:

复制代码
pip uninstall keras
pip install keras==2.11.0

(3)确保 transformers 库版本也是最新的或者与 Keras 2.x 系列兼容。

运行以上命令后,再次尝试运行 llamafactory-cli,这样应该能解决当前的兼容性问题。

如果还有其他问题,请随时告知!

免费体验版本的成功界面:

相关推荐
德育处主任Pro2 天前
前端玩转大模型,DeepSeek-R1 蒸馏 Llama 模型的 Bedrock 部署
前端·llama
relis3 天前
AVX-512深度实现分析:从原理到LLaMA.cpp的性能优化艺术
性能优化·llama
relis4 天前
llama.cpp RMSNorm CUDA 优化分析报告
算法·llama
云雾J视界4 天前
开源革命下的研发突围:Meta Llama系列模型的知识整合实践与启示
meta·开源·llama·知识管理·知识整合·知识迭代·知识共享
丁学文武6 天前
大模型原理与实践:第三章-预训练语言模型详解_第3部分-Decoder-Only(GPT、LLama、GLM)
人工智能·gpt·语言模型·自然语言处理·大模型·llama·glm
余衫马6 天前
llama.cpp:本地大模型推理的高性能 C++ 框架
c++·人工智能·llm·llama·大模型部署
LETTER•10 天前
Llama 模型架构解析:从 Pre-RMSNorm 到 GQA 的技术演进
深度学习·语言模型·自然语言处理·llama
拓端研究室10 天前
JupyterLab+PyTorch:LoRA+4-bit量化+SFT微调Llama 4医疗推理应用|附代码数据
llama
之歆12 天前
LangGraph构建多智能体
人工智能·python·llama
胡耀超14 天前
开源生态与技术民主化 - 从LLaMA到DeepSeek的开源革命(LLaMA、DeepSeek-V3、Mistral 7B)
人工智能·python·神经网络·开源·大模型·llama·deepseek