基于深度学习的眼部疾病检测识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :)

1. 项目简介

眼部疾病的早期诊断对于防止视力下降乃至失明至关重要。然而,专业的医疗资源分布不均,尤其是在偏远地区,人们很难获得专业的眼科医生提供的及时诊断服务。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络(CNN),利用眼部疾病影像数据进行模型训练与验证,预测AUC达到 94.9%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,该系统可以大大提高疾病诊断的准确性和效率,为临床决策提供支持,同时也能缓解医疗资源紧张的问题。

B站系统演示视频: 基于深度学习的眼部疾病检测识别系统_哔哩哔哩_bilibili

2. 眼部疾病数据集读取与预处理

使用 Tensorflow 框架的 tf.keras.preprocessing.image_dataset_from_directory 函数从数据集文件夹中加载眼部图片数据,同时进行训练集和验证集的切分:

python 复制代码
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./dataset/",  #数据集目录
    label_mode="categorical",  #标签模式,根据目录生成
    validation_split=0.2,  # 验证集比例为20%
    subset="training",   #这是个训练集
    seed=42 ,     #随机种子,保证划分一致  
    image_size=(img_size, img_size),  #图像大小
    batch_size=batch_size
)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "./dataset/",
    label_mode="categorical",
    validation_split=0.2,
    subset="validation",
    seed=42 ,     #随机种子,保证划分一致 
    image_size=(img_size, img_size),
    batch_size=batch_size)

对加载的数据集进行样本的可视化:

共包含四种类别: 白内障(Cataract)、糖尿病视网膜病变(Diabetic Retinopathy)、青光眼(Glaucoma)、正常(Normal),各类别样本数量分布如下:

3. 卷积神经网络模型构建

卷积神经网络(Convolutional Neural Networks, CNN)是一种专门用于处理具有类似网格结构的数据的深度学习模型,例如图像。CNN在计算机视觉领域取得了巨大的成功,尤其是在图像识别、目标检测和图像生成等方面。

关键特点:

  • 局部感受野:CNN通过卷积层捕捉输入数据的局部特征,每个神经元只与输入数据的一个局部区域相连接;
  • 权重共享:在卷积层中,同一个卷积核的权重在整个输入数据上共享,这减少了模型参数的数量,提高了训练效率;
  • 池化层:CNN通常在卷积层之后使用池化层来降低特征维度,减少计算量,同时保持特征的不变性;
  • 层次结构:CNN通过多个卷积和池化层的堆叠,逐渐提取从低级到高级的特征。

Tensorflow是一个开源的机器学习框架,而Keras是一个高级API,它可以运行在Tensorflow之上,使得构建和训练神经网络变得更加简单。

python 复制代码
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_size, img_size, 3)),
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(img_size, img_size, 3)), # 卷积层1,卷积核3*3  
    layers.MaxPooling2D((2, 2)),               # 池化层1,2*2采样
    
    
    # ......
    
    layers.Dropout(0.2),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(len(class_names))               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

完成卷积神经网络模型构建后,进行模型的编译:

python 复制代码
initial_learning_rate = 1e-3

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
        initial_learning_rate, #设置初始学习率
        decay_steps=64,      #每隔多少个step衰减一次
        decay_rate=0.94,     #衰减系数
        staircase=True
)

# 将指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
 
model.compile(optimizer=optimizer,
              loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

4. 模型训练与验证

结合 EarlyStopping 与 ModelCheckpoint,在模型训练过程中保存性能最好的模型权重,同时根据验证集的预测准确率进行模型训练的早停。

python 复制代码
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
 
epochs = 100
 
# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                                monitor='val_accuracy',
                                verbose=1,
                                save_best_only=True)
 
# 设置早停
earlystopper = EarlyStopping(monitor='val_accuracy', 
                             min_delta=0.001,
                             patience=10, 
                             verbose=1)

history = model.fit(train_ds,
                    validation_data=val_ds,
                    epochs=epochs,
                    callbacks=[checkpointer, earlystopper]
)
复制代码
Epoch 1/100
106/106 [==============================] - ETA: 0s - loss: 0.9847 - accuracy: 0.5560
Epoch 1: val_accuracy improved from -inf to 0.68565, saving model to best_model.h5

......
Epoch 9/100
106/106 [==============================] - ETA: 0s - loss: 0.3543 - accuracy: 0.8586
Epoch 9: val_accuracy improved from 0.85409 to 0.87663, saving model to best_model.h5
106/106 [==============================] - 9s 88ms/step - loss: 0.3543 - accuracy: 0.8586 - val_loss: 0.3334 - val_accuracy: 0.8766
Epoch 10/100
106/106 [==============================] - ETA: 0s - loss: 0.3179 - accuracy: 0.8743
Epoch 10: val_accuracy improved from 0.87663 to 0.88375, saving model to best_model.h5
106/106 [==============================] - 10s 90ms/step - loss: 0.3179 - accuracy: 0.8743 - val_loss: 0.3191 - val_accuracy: 0.8837

......
Epoch 20: early stopping

模型完成训练后,保存验证集中预测准确率最高的模型权重,进行模型的性能评估:

python 复制代码
# 获取疾病标签名称列表
# 创建一个范围,表示 x 轴上每个标签的位置
x = np.arange(len(class_names))
# 设置柱状图的宽度
width = 0.80
fig, ax = plt.subplots(figsize=(8, 6), dpi=80)
rects = ax.bar(x, cate_auc, width, color='#EEC900')
ax.set_ylabel('AUC Score')
ax.set_xlabel('标签')
ax.set_title('不同类型眼病模型预测 AUC Score 分布')
ax.set_xticks(x, class_names)
ax.bar_label(rects, padding=3)
fig.tight_layout()
plt.show()

可以看出, 白内障(Cataract)预测 AUC=97.21% 、糖尿病视网膜病变(Diabetic Retinopathy)的预测 AUC=99.99% 、青光眼(Glaucoma)的预测 AUC=86.82% 、正常(Normal)的预测 AUC=95.67%

5. 眼部疾病检测识别系统

利用 Flask + Bootstrap 框架搭建响应式布局的交互分析 web 系统,利用 keras load_model 加载训练好的性能最佳的模型,提供标准化 rest api,提供眼部疾病的在线识别功能。

5.1 系统首页

5.2 卷积神经网络介绍

5.3 眼部疾病在线检测

(1)糖尿病视网膜病变(Diabetic Retinopathy)的预测样例

(2)青光眼(Glaucoma)的预测样例

(3)白内障(Cataract)的预测样例

(4)眼部正常(Normal)的预测样例

6. 结论

本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络(CNN),利用眼部疾病影像数据进行模型训练与验证,预测AUC达到 94.9%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,该系统可以大大提高疾病诊断的准确性和效率,为临床决策提供支持,同时也能缓解医疗资源紧张的问题。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取 认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python-数据挖掘实战案例

2. Python-深度学习实战案例

3. Python-管理系统实战案例

相关推荐
GIS数据转换器1 分钟前
城市生命线安全保障:技术应用与策略创新
大数据·人工智能·安全·3d·智慧城市
无须logic ᭄4 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis17 分钟前
flask常见问答题
后端·python·flask
Channing Lewis19 分钟前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月1 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之65 详细设计 之6 变形机器人及伺服跟随
人工智能
我想学LINUX2 小时前
【2024年华为OD机试】 (A卷,100分)- 微服务的集成测试(JavaScript&Java & Python&C/C++)
java·c语言·javascript·python·华为od·微服务·集成测试
m0_743106464 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106464 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
数据小爬虫@5 小时前
深入解析:使用 Python 爬虫获取苏宁商品详情
开发语言·爬虫·python