Matlab Delany-Bazley和Miki模型预测多孔材料吸声性能

Delany-Bazley模型和Miki模型是常用于预测多孔材料吸声性能的两种模型。Delany-Bazley模型是一种经验模型,用于描述多孔材料的声学特性,特别是复杂多孔材料如泡沫材料。该模型基于材料的几何参数(如孔隙率、孔隙形状等)来预测材料的声学吸收性能。基本方程如下所示:

其中:

Miki模型是一个复杂的声学模型,用于描述多孔材料的声学吸声性能。该模型考虑了多孔材料内部的复杂声学过程,并基于材料的几何参数和声学参数来进行建模。Miki模型的一般方程式如下所示:

其中:

Miki模型中的参数通常需要根据具体的多孔材料和实验数据来确定。这些参数包括多孔材料的孔隙结构参数(如孔隙率、孔隙形状等),材料的声学性质(如声速、密度等),材料的吸声性能参数(如吸声系数等)。Miki模型是一个复杂的模型,其具体方程式和参数可能会有所变化或扩展,具体取决于研究的深度和应用的需要。在实际应用中,通常需要结合实验数据和模型预测来验证和调整参数,以更好地描述多孔材料的声学吸声性能。

clear all;clc;c0 = 343; % m/sro0 = 1.21; % kg/m^3sigma = 40000; % Pa/m^2 - flow resistivityd = 0.02; % mfmin = 50; % Hzfmax = 6400; % Hzf = fmin:2:fmax; % Hzpsi = 0; % rad%% wall - air - mineral woolair_thickness = 0.09;wool_thickness = 0.05;sigma = mineral_fibre_flow_resistivity(); % Pa/m^2[zc_db, kc_db] = zc_kc('DB', sigma, f, c0, ro0);[zc_m, kc_m] = zc_kc('Miki', sigma, f, c0, ro0);z_air = surface_impedance_single_layer(ro0 * c0, 2*pi.*f./c0, air_thickness);z_air_wool_db = surface_impedance_next_layer(z_air, zc_db, kc_db, wool_thickness);z_air_wool_m = surface_impedance_next_layer(z_air, zc_m, kc_m, wool_thickness);a_air_wool_db = abs_coeff(z_air_wool_db, c0, ro0, psi);a_air_wool_m = abs_coeff(z_air_wool_m, c0, ro0, psi);figure(2)xticks_plot = 125 * 2.^(-1:1:5);semilogx(f, a_air_wool_db,f, a_air_wool_m);xlim([fmin fmax]);set(gca,'XTick',xticks_plot);title('Absorption coefficient of wall - air - mineral wool setup');legend('Delany-Bazley model', 'Miki model', 'Location', 'southeast');xlabel('f [Hz]');ylabel('abs. coeff.');

function [zc, kc] = zc_kc(model, sigma, f, c0, ro0)omega = 2 * pi * f;X = ro0 * f / sigma;if strcmp(model, 'DB')    zc = ro0 * c0 * (1 + 0.0571 * X.^(-0.754) - 1i*0.087 * X.^(-0.732));    kc = (omega / c0 ).*(1 + 0.0978 * X.^(-0.7) - 1i * 0.189 * X.^(-0.595));elseif strcmp(model, 'Miki')    zc = ro0 * c0 * (1 + 0.07 * (f / sigma).^(-0.632) - 1i*0.107*(f/sigma).^(-0.632));    kc = (omega / c0).* (1 + 0.109 * (f / sigma).^(-0.618) - 1i*0.160*(f/sigma).^(-0.618));end;
相关推荐
cwj&xyp15 分钟前
Python(二)str、list、tuple、dict、set
前端·python·算法
是十一月末19 分钟前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
Kisorge1 小时前
【C语言】指针数组、数组指针、函数指针、指针函数、函数指针数组、回调函数
c语言·开发语言
机智的叉烧1 小时前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
凳子花❀1 小时前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
轻口味2 小时前
命名空间与模块化概述
开发语言·前端·javascript
泰迪智能科技013 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
晓纪同学3 小时前
QT-简单视觉框架代码
开发语言·qt
威桑3 小时前
Qt SizePolicy详解:minimum 与 minimumExpanding 的区别
开发语言·qt·扩张策略
飞飞-躺着更舒服3 小时前
【QT】实现电子飞行显示器(简易版)
开发语言·qt