【无人机设计与控制】四旋翼无人机轨迹跟踪及避障Matlab代码

摘要

本文主要研究了四旋翼无人机在复杂环境中的轨迹跟踪与避障控制策略。通过Matlab/Simulink对四旋翼无人机进行了建模与仿真。系统集成了避障算法,使得无人机在执行任务时能够有效避开障碍物,保证飞行的安全性与稳定性。

理论

无人机飞行控制通常涉及姿态控制和位置控制两个层次。在姿态控制中,采用ADRC(Active Disturbance Rejection Control)进行控制,能够有效克服系统中的干扰,提高控制精度。在位置控制方面,主要通过路径规划算法生成期望轨迹,并结合避障算法,实时调整无人机的飞行路径。

关键算法
  1. 路径规划:使用基于图论或采样方法的路径规划算法生成飞行路径。

  2. 避障算法:通过传感器实时感知障碍物,并动态调整无人机飞行路径,以避免碰撞。

实验结果

通过Matlab/Simulink仿真,验证了提出的控制策略的有效性。仿真场景中,无人机能够在有障碍物的环境中安全完成轨迹跟踪任务。下图展示了无人机的实际飞行轨迹(红色)与期望轨迹(蓝色),可以看到在避开障碍物的同时,无人机能够很好地跟踪预定路径。

部分代码

复制代码
% 参数初始化
init_pos = [0, 0, 1]; % 无人机初始位置
goal_pos = [2, 2, 1]; % 目标位置

% 设置障碍物
obstacles = [1, 1, 1; -1, -1, 1]; % 障碍物坐标

% 路径规划
path = path_planning(init_pos, goal_pos, obstacles);

% 控制器参数设置
adrc_params = set_adrc_params();

% 模拟无人机轨迹跟踪
for t = 1:simulation_time
    % 计算控制量
    control_input = adrc_controller(current_state, desired_state, adrc_params);
    
    % 更新无人机位置
    current_state = update_position(current_state, control_input);
    
    % 可视化
    visualize_path(current_state, path, obstacles);
end

参考文献

  1. Gao, Z., "Active disturbance rejection control: A paradigm shift in feedback control system design," ISA Transactions, 2006.

  2. LaValle, S. M., "Planning algorithms," Cambridge University Press, 2006.

  3. Beard, R., and McLain, T., "Small unmanned aircraft: Theory and practice," Princeton University Press, 2012.

相关推荐
后台开发者Ethan1 小时前
Python需要了解的一些知识
开发语言·人工智能·python
常利兵2 小时前
Kotlin作用域函数全解:run/with/apply/let/also与this/it的魔法对决
android·开发语言·kotlin
幼稚园的山代王2 小时前
Kotlin-基础语法练习一
android·开发语言·kotlin
重生成为编程大王2 小时前
Java ConcurrentHashMap 深度解析
java·开发语言
tanyongxi662 小时前
C++ 特殊类设计与单例模式解析
java·开发语言·数据结构·c++·算法·单例模式
遗憾皆是温柔2 小时前
24. 什么是不可变对象,好处是什么
java·开发语言·面试·学习方法
wearegogog1233 小时前
C语言中的输入输出函数:构建程序交互的基石
c语言·开发语言·交互
Fine姐3 小时前
The Network Link Layer: 无线传感器中Delay Tolerant Networks – DTNs 延迟容忍网络
开发语言·网络·php·硬件架构
HAPPY酷3 小时前
给纯小白的Python操作 PDF 笔记
开发语言·python·pdf
liulilittle3 小时前
BFS寻路算法解析与实现
开发语言·c++·算法·宽度优先·寻路算法·寻路