双指针算法专题(2)

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页: 我要学编程(ಥ_ಥ)-CSDN博客

所属专栏: 优选算法专题

想要了解双指针算法的介绍,可以去看下面的博客:双指针算法的介绍

目录

611.有效三角形的个数

[LCR 179.查找总价格为目标值的两个商品](#LCR 179.查找总价格为目标值的两个商品)

15.三数之和

[18. 四数之和](#18. 四数之和)


611.有效三角形的个数

题目:

给定一个包含非负整数的数组 nums ,返回其中可以组成三角形三条边的三元组个数。

示例 1:

复制代码
输入: nums = [2,2,3,4]
输出: 3
解释:有效的组合是: 
2,3,4 (使用第一个 2)
2,3,4 (使用第二个 2)
2,2,3

示例 2:

复制代码
输入: nums = [4,2,3,4]
输出: 4

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

思路:这个题目就是想让我们在给的数组中找出可以组成三角形的个数。确定三个数是否可以组成三角形:任意两边之和大于第三边即可。

最简单的方法就是直接遍历数组,根据三角形的判断条件暴力枚举即可。

代码实现:

错误解法:暴力枚举

java 复制代码
class Solution {
    // 错误解法:暴力枚举
    public int triangleNumber(int[] nums) {
        int count = 0;
        // 注意这里的i,j,k的位置,i最多只能倒带倒数第三个的位置,j....
        for (int i = 0; i <= nums.length-3; i++) {
            for (int j = i+1; j <= nums.length-2; j++) {
                for (int k = j+1; k <= nums.length-1; k++) {
                    if (nums[i]+nums[j] > nums[k] && 
                        nums[i]+nums[k] > nums[j] &&
                        nums[k]+nums[j] > nums[i]
                        ) {
                            count++;
                    }
                }
            }
        }
        return count;
    }
}

由于时间复杂度过高(O(N^3)),上面的代码肯定是跑不过的。

接下来,就是想想怎么优化?

我们知道三角形的判定还有一种简单方法:两小边之和大于最大边即可。那怎么找两小边呢?一个一个的去比较吗?这个肯定不现实。其实Arrays这类中有一个静态方法可以用来对数字进行排序( sort() ) ,知道了两小边之和,就是找最大边进行判断即可。

这里我们就通过一定的条件来优化了第三层循环,减少了循环的次数。

优化解法:定位两小边 和 最大边进行比较

java 复制代码
class Solution {
    // 优化解法一:定位两小边 和 最大边进行比较
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int count = 0;
        for (int i = 0; i <= nums.length-3; i++) {
            for (int j = i+1; j <= nums.length-2; j++) {
                // k此时是三个数中最大值的下标
                int k = j+1;
                while (k < nums.length) {
                    if (nums[i]+nums[j] > nums[k]) {
                        count++;
                        k++;
                    } else {
                        // 由于数组是升序,因此后面的一定大于此时的值,因此无需判断了
                        break;
                    }
                }
            }
        }
        return count;
    }
}

既然可以定位 两小边,那么可不可以定位 最大边呢,然后找两小边进行比较呢?答案是可以的。

优化解法:固定最大边,比较另外两边

java 复制代码
class Solution {
    // 优化解法二:固定最大边,比较另外两边
    public int triangleNumber(int[] nums) {
        Arrays.sort(nums);
        int count = 0;
        for (int k = nums.length-1; k >=2; k--) {
            // 开始寻找两小边的范围值
            int i = 0;
            int j = k-1;
            while (i < j) {
                if (nums[i]+nums[j] > nums[k]) {
                    count += (j-i); // 满足三角形的个数
                    j--; // i变化没意义
                } else {
                    i++; // j变化没有意义
                }
            }
        }
        return count;
    }
}

注意:在固定最大边的优化方法中,我们只需要范围比较 nums[i] + nums[j] 与 nums[k] 的大小关系即可。没有去一个一个的遍历比较 比较 nums[i] + nums[j] 与 nums[k] 的大小关系。这就致使时间复杂度从 O(N^3) 降至 O(N^2)。

LCR 179.查找总价格为目标值的两个商品

题目:

购物车内的商品价格按照升序记录于数组 price。请在购物车中找到两个商品的价格总和刚好是 target。若存在多种情况,返回任一结果即可。

示例 1:

复制代码
输入:price = [3, 9, 12, 15], target = 18
输出:[3,15] 或者 [15,3]

示例 2:

复制代码
输入:price = [8, 21, 27, 34, 52, 66], target = 61
输出:[27,34] 或者 [34,27]

提示:

  • 1 <= price.length <= 10^5
  • 1 <= price[i] <= 10^6
  • 1 <= target <= 2*10^6

思路: 很简单的思路,直接双层for循环遍历数组,去找和target的值即可。

代码实现:

错误解法:暴力枚举

java 复制代码
class Solution {
    // 错误解法:暴力枚举
    public int[] twoSum(int[] price, int target) {
        int[] ret = new int[2];
        for (int i = 0; i < price.length; i++) {
            // 如果从j=0开始的话,就会有重复的,且可能会出现i==j的情况
            for (int j = i+1; j < price.length; j++) {
                if (price[i]+price[j] == target) {
                    ret[0] = price[i];
                    ret[1] = price[j];
                    return ret;
                }
            }
        }
        return ret;
    }
}

上面的代码时间复杂度过高(O(N^2)),因此我们优化的方向就是降低时间复杂度为 O(N)。由于题目告诉我们了这个数组是有序的,并且知道了要查找的数据,因此我们可以对数据进行范围筛选。

通过上面的方法,我们会发现查找的效率直线上升了。其思路的时间复杂度为 O(N)。

正确解法:使用对撞指针,减少查询的次数,降低时间复杂度

java 复制代码
class Solution {
    public int[] twoSum(int[] price, int target) {
        int[] ret = new int[2];
        // 通过target的值来缩小范围遍历
        int left = 0;
        int right = price.length-1;
        while (left < right) {
            if (price[left]+price[right] > target) {
                // 大于目标值,得减小
                right--;
            } else if (price[left]+price[right] < target) {
                // 小于目标值。得增大
                left++;
            } else {
                ret[0] = price[left];
                ret[1] = price[right];
                break;
            }
        }
        return ret;
    }
}

通过上面两个题目,我们可以发现一个这样的规律:对撞指针能降低一个幂次级的时间复杂度。

例如:O(N^3) 使用对撞指针后,可以降低为 O(N^2);O(N^2) 使用对撞指针后,可以降低为 O(N)。当然,最多也只能降低至 O(N)了,不可能直接降为O(1)。

15.三数之和

题目:

给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != ji != kj != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。

**注意:**答案中不可以包含重复的三元组。

示例 1:

复制代码
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。

示例 2:

复制代码
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。

示例 3:

复制代码
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。

提示:

  • 3 <= nums.length <= 3000
  • -105 <= nums[i] <= 105

思路:根据题目给出的信息来看:我们要做的事情有两步:第一,找到符合三数之和为0的数;第二,对找到的数据进行去重操作。第一步的话,首先想到的就是暴力枚举找到符合要求的数据。但是找到数据之后的去重操作是比较难的,因为三个数的虽然总体是一样的,但是其内部的顺序却不同,我们无法直接判断,因此这里我们就需要对数据进行排序操作。但问题又来了:与其选择找出数据之后排序,不如直接在原数组上面进行排序操作。可能有小伙伴会疑惑:为什么要在原数组上进行排序呢?如下图所示:

排完序之后,我们会发现重复的数据长得一模一样,因此这里我们可以使用一个天然的去重容器set来处理,最终得到的结果就是我们想要的答案。

代码实现:

错误解法:暴力枚举

java 复制代码
class Solution {
    // 错误解法:暴力枚举
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> list = new ArrayList<>();
        // 1、先对数组整体排序
        Arrays.sort(nums);
        // 2、再去找符合条件的数据
        for (int i = 0; i <= nums.length-3; i++) {
            List<Integer> sub_list = new ArrayList<>();
            for (int j = i+1; j <= nums.length-2; j++) {
                for (int k = j+1; k <= nums.length-1; k++) {
                    // 这里可以优化一点点效率:>0的话,就直接跳出循环,
                    // 大于0,再继续往后走也没用(根本不可能出现==0的情况)
                    if (nums[i]+nums[j]+nums[k] == 0) {
                        sub_list.add(nums[i]);
                        sub_list.add(nums[j]);
                        sub_list.add(nums[k]);
                        List<Integer> integerList = new ArrayList<>(sub_list);
                        list.add(integerList);
                        // 每次插入数据之后,要及时清空,保证只有三个数据
                        sub_list.clear();
                    }
                }
            }
        }
        // 3、利用set对其去重
        Set<List<Integer>> set = new HashSet<>();
        // 遍历list将其中的元素插入set中
        for (int i = 0; i < list.size(); i++) {
            if (!set.contains(list.get(i))) {
                set.add(list.get(i));
            }
        }
        List<List<Integer>> new_list = new ArrayList<>();
        // 遍历set中的元素插入到new_list
        for (List<Integer> x : set) {
            new_list.add(x);
        }
        return new_list;
    }
}

注意:上面代码的时间复杂度过大(三层for循环+两个遍历for循环), 会超出时间限制。在最后一个将set中的元素插入new_list 中,可能有的小伙伴会写出下面的代码。

java 复制代码
for (int i = 0; i < list.size(); i++) {
    if (set.contains(list.get(i))) {
        new_list.add(list.get(i));
    }
}

这个代码是有问题的,没有达到去重的目的。因为 list 可能中存在着多份相同的数据,但是在set 中只存在一份。因此当我们用 list 中的元素去遍历set 时,就会出现重复的元素,最终还是没有达到去重的效果。如下所示:

优化的思路有两个:1、对于查找数据时,使用对撞指针来进行优化。即通过最外层循环来固定一个数,然后再用对撞指针来找符合要求的数据。2、对去重的优化。set 去重虽然简单方便,但是两个for循环也带来了不少时间上的消耗。

1、优化查找数据:

正确解法:对撞指针优化查找数据

java 复制代码
class Solution {
    // 正确解法:使用对撞指针降低时间复杂度
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> list = new ArrayList<>();
        // 1、先对数组整体排序
        Arrays.sort(nums);
        // 2、再去找符合条件的数据
        for (int i = 0; i <= nums.length-3; i++) {
            List<Integer> sub_list = new ArrayList<>();
            int j = i+1;
            int k = nums.length-1;
            while (j < k) {
                if (nums[i]+nums[j]+nums[k] == 0) {
                        sub_list.add(nums[i]);
                        sub_list.add(nums[j]);
                        sub_list.add(nums[k]);
                        List<Integer> integerList = new ArrayList<>(sub_list);
                        list.add(integerList);
                        sub_list.clear();
                        // 只有一个增大,另一个减小,才可能达到相等
                        // 这里如果不是两个同时走的话,就会超出时间限制
                        j++; 
                        k--;
                } else if (nums[i]+nums[j]+nums[k] > 0) {
                    // 得减小,k--
                    k--;
                } else { // < 0
                    // 得增加,j++
                    j++;
                }
            }
        }
        // 3、利用set对其去重
        Set<List<Integer>> set = new HashSet<>();
        // 遍历list将其中的元素插入set中
        for (int i = 0; i < list.size(); i++) {
            if (!set.contains(list.get(i))) {
                set.add(list.get(i));
            }
        }
        List<List<Integer>> new_list = new ArrayList<>();
        // 遍历set中的元素插入到new_list中
        for (List<Integer> x : set) {
            new_list.add(x);
        }
        return new_list;
    }
}

上面的代码虽然可以通过全部的测试用例,但是时间效率非常之低。因此就要开始尝试看看能不能对去重操作进行优化。而最理想的优化就是能在找数据的同时去重。即在查找数据时,不把重复的数据算入其中,这就直接从源头上杜绝了去重的操作。那怎样才能找到不重复的数据呢?

我们会发现一个规律:当数据重复时,结果一定是相同的。即找到一组符合要求的数据之后,如果 j 对应的值 和 上一次 j 对应的值是一样的,那么就可以跳过,因为上一次 j 对应的值已经和其他值进行了结合检查。如果可以,那么就成了一次重复的数据;反之,上一次也检查过了。同理,k、i也是如此。当要注意一个数组越界问题。

java 复制代码
class Solution {
    // 正确解法:对撞指针+查找去重
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> list = new ArrayList<>();
        // 1、先对数组整体排序
        Arrays.sort(nums);
        // 2、再去找符合条件的数据
        for (int i = 0; i <= nums.length-3; i++) {
            // 与上一次的值相同,就不需要再进行重复的操作了
            while (i-1 >= 0 && i <= nums.length-3 && nums[i] == nums[i-1]) {
                i++;
            }
            // i对应的值一定是数组中最小的值,如果它都>0了,那肯定找不到了
            while (i < nums.length && nums[i] > 0) {
                i++;
            }
            List<Integer> sub_list = new ArrayList<>();
            int j = i+1;
            int k = nums.length-1;
            while (j < k) {
                if (nums[i]+nums[j]+nums[k] == 0) {
                        sub_list.add(nums[i]);
                        sub_list.add(nums[j]);
                        sub_list.add(nums[k]);
                        List<Integer> integerList = new ArrayList<>(sub_list);
                        list.add(integerList);
                        sub_list.clear();
                        // 只有一个增大,另一个减小,才可能达到相等
                        // 这里如果不是两个同时走的话,就会超出时间限制
                        j++; 
                        k--;
                        // 如果和上一次的数据相同,则跳过
                        while (j < k && nums[j] == nums[j-1]) {
                            j++;
                        }
                        while (j < k && nums[k] == nums[k+1]) {
                            k--;
                        }
                } else if (nums[i]+nums[j]+nums[k] > 0) {
                    // 得减小,k--
                    k--;
                    // 数据与上一次相同的话,查找出来的还是同样的结果
                    while (j < k && nums[k] == nums[k+1]) {
                        k--;
                    }
                } else { // < 0
                    // 得增加,j++
                    j++;
                    // 数据与上一次相同的话,查找出来的还是同样的结果
                    while (j < k && nums[j] == nums[j-1]) {
                        j++;
                    }
                }
            }
        }
        return list;
    }
}

总的来说,这一题还是比较难的。既要想要去重的方法(利用set或者查找时排序相同的元素),还要避免时间复杂度过高的情况下查找数据(使用对撞指针进行优化处理)。

接下来,我们再来做一道与这个极其相似的题目。

18. 四数之和

题目:

给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复 的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为两个四元组重复):

  • 0 <= a, b, c, d < n
  • abcd 互不相同
  • nums[a] + nums[b] + nums[c] + nums[d] == target

你可以按 任意顺序 返回答案 。

示例 1:

复制代码
输入:nums = [1,0,-1,0,-2,2], target = 0
输出:[[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]

示例 2:

复制代码
输入:nums = [2,2,2,2,2], target = 8
输出:[[2,2,2,2]]

提示:

  • 1 <= nums.length <= 200
  • -109 <= nums[i] <= 109
  • -109 <= target <= 109

思路:和三数之和简直就是孪生兄弟。 同样是先排序,再去查找数据(这里只展示优化后的思路和解法,想看推导过程和暴力枚举到优化的过程,可见三数之和)。

代码实现:

错误解法:用双层对撞指针代替四层for循环+内部去重

java 复制代码
class Solution {
    // 双层对撞指针会忽略一些数据
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> list = new ArrayList<>();
        Arrays.sort(nums);
        int i = 0;
        int j = nums.length-1;
        while (i < j) {
            List<Integer> sub_list = new ArrayList<>();
            // 注意left和right的取值
            int left = i+1;
            int right = j-1;
            while (left < right) {
                // 注意:对于内层循环来说,只有left和right是可变化的,i、j都是固定的
                if (nums[i]+nums[j]+nums[left]+nums[right] == target) {
                    sub_list.add(nums[i]);
                    sub_list.add(nums[j]);
                    sub_list.add(nums[left]);
                    sub_list.add(nums[right]);
                    List<Integer> integerList = new ArrayList<>(sub_list);
                    list.add(integerList);
                    sub_list.clear();
                    left++;
                    right--;
                    while(left < right && nums[right] == nums[right+1]) {
                        right--;
                    }
                    while(left < right && nums[left] == nums[left-1]) {
                        left++;
                    }
                } else if (nums[i]+nums[j]+nums[left]+nums[right] > target) {
                    right--;
                    while(left < right && nums[right] == nums[right+1]) {
                        right--;
                    }
                } else {
                    left++;
                    while(left < right && nums[left] == nums[left-1]) {
                        left++;
                    }
                }
            }
            i++;
            j--;
            while (i < j && nums[i] == nums[i-1]) {
                i++;
            }
            while (i < j && nums[j] == nums[j+1]) {
                j--;
            }
        }
        return list;
    }
}

上面代码的思路确实不错,的确可以减少不少时间的消耗,但是会漏掉一些数据。

当 nums = [-3, -1, 0, 2, 4, 5]、target = 0时,是找不到数据的。 感兴趣的小伙伴可以自己去测一测。(原本,我最先也是想到用这种方法来写,感觉效率应该会很高,但是后面经过调试发现,根本就找不出来上面的数据。)

正确解法:使用双层for循环+一层对撞指针+查找数据时去重

java 复制代码
class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
        List<List<Integer>> list = new ArrayList<>();
        // 1、排序
        Arrays.sort(nums);
        // 2、开始找数据+去重操作
        for (int i = 0; i <= nums.length-4;) {
            for (int j = i+1; j <= nums.length-3;) {
                List<Integer> sub_list = new ArrayList<>();
                int left = j+1;
                int right = nums.length-1;
                while (left < right) {
                    if (((long)nums[i]+nums[j]+
                            nums[left]+nums[right]) == target) {
                        sub_list.add(nums[i]);
                        sub_list.add(nums[j]);
                        sub_list.add(nums[left]);
                        sub_list.add(nums[right]);
                        List<Integer> integerList = new ArrayList<>(sub_list);
                        list.add(integerList);
                        sub_list.clear();
                        left++;
                        right--;
                        while(left < right && nums[right] == nums[right+1]) {
                            right--;
                        }
                        while(left < right && nums[left] == nums[left-1]) {
                            left++;
                        }
                    } else if ((long)nums[i]+nums[j]+
                            nums[left]+nums[right] > target) {
                        right--;
                        while(left < right && nums[right] == nums[right+1]) {
                            right--;
                        }
                    } else {
                        left++;
                        while(left < right && nums[left] == nums[left-1]) {
                            left++;
                        }
                    }
                }
                j++;
                while (j <= nums.length-3 && nums[j] == nums[j-1]) {
                    j++;
                }
            }
            i++;
            while (i >= 1 && i <= nums.length-4 && nums[i] == nums[i-1]) {
                i++;
            }
        }
        return list;
    }
}

注意:

1、

因此我们在计算四数之和时强转为了 long类型。

2、

总体来说:三数之和和四数之和还是有点难度的,不仅需要编码能力强,思路也要清新。

好啦!本期 双指针算法专题(2)的学习之旅就到此结束啦!我们下一期再一起学习吧!

相关推荐
axxy20001 小时前
leetcode之hot100---24两两交换链表中的节点(C++)
c++·leetcode·链表
chenziang11 小时前
leetcode hot100 环形链表2
算法·leetcode·链表
Captain823Jack3 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
Captain823Jack3 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
Aileen_0v04 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
是小胡嘛4 小时前
数据结构之旅:红黑树如何驱动 Set 和 Map
数据结构·算法
m0_748255024 小时前
前端常用算法集合
前端·算法
呆呆的猫4 小时前
【LeetCode】227、基本计算器 II
算法·leetcode·职场和发展
Tisfy4 小时前
LeetCode 1705.吃苹果的最大数目:贪心(优先队列) - 清晰题解
算法·leetcode·优先队列·贪心·
余额不足121385 小时前
C语言基础十六:枚举、c语言中文件的读写操作
linux·c语言·算法