机器学习中求解模型参数的方法

机器学习中用于求解模型参数的方法主要包括以下几种:

  1. 极大似然估计(Maximum Likelihood Estimation, MLE):这是一种最常见的参数估计方法。目标是找到一组参数,使得在这组参数下,观察到当前样本数据的概率最大。

  2. 贝叶斯估计(Bayesian Estimation):与MLE不同,贝叶斯估计是基于贝叶斯公式,将参数视为随机变量,以先验概率和似然函数共同决定参数的后验估计。

  3. 最小二乘法(Least Squares Method):这是一种在回归问题中常用的方法,通过最小化预测值与真实值之间的平方误差来求解模型的参数。

  4. 最大后验估计(Maximum a Posteriori, MAP):这也是一种基于贝叶斯公式的估计方法,但与MLE和贝叶斯估计不同的是,它在似然函数的基础上引入了参数的先验概率,然后求解使得后验概率最大的参数。

  5. 梯度下降法(Gradient Descent):虽然严格来说,这不是一种估计方法,但它是求解模型参数常用的优化方法。通过不断计算损失函数的梯度并按梯度方向更新参数,直到找到损失函数的最小值点。

  6. 正则化方法(Regularization):包括L1正则化(Lasso)和L2正则化(Ridge)。虽然它们本身也不是一种参数估计方法,而是一种在MLE素基础上引入的对参数大小控制的手段,但它们会使得参数的求解受到限制,从而影响参数的估计结果。

值得注意的是,这些方法不是彼此替代的关系,有时在某些模型中,可能会结合使用多种方法来求解模型参数。选择哪种方法,需要根据具体问题,特别是数据分布特性、模型的结构复杂度等因素来考虑。

相关推荐
(; ̄ェ ̄)。2 分钟前
机器学习入门(十一)逻辑回归,分类问题评估
机器学习·分类·逻辑回归
易晨 微盛·企微管家4 分钟前
汽车经销服务实战案例解析|企业微信AI SCRM助力实现咨询标准化与即时化
人工智能
阳艳讲ai5 分钟前
九尾狐AI智能获客白皮书:重构企业增长新引擎
大数据·人工智能
老蒋每日coding5 分钟前
AI Agent 设计模式系列(十二)—— 异常处理和恢复模式
人工智能·设计模式
人工智能AI技术6 分钟前
【Agent从入门到实践】20 LLM的基础使用:API调用(OpenAI、国产大模型),程序员快速上手
人工智能·python
云上凯歌8 分钟前
01_AI工具平台项目概述.md
人工智能·python·uni-app
qunaa010114 分钟前
【深度学习】基于Sparse-RCNN的多类别蘑菇物种识别与检测系统_2
人工智能·深度学习·目标跟踪
薛不痒15 分钟前
深度学习的补充
人工智能·深度学习
_codemonster19 分钟前
分布式深度学习训练框架Horovod
人工智能·分布式·深度学习
数智工坊19 分钟前
【MobileVIT论文解读】打破 CNN 与 ViT 壁垒:MobileViT 如何重塑移动端视觉模型?
人工智能·神经网络·cnn