机器学习中求解模型参数的方法

机器学习中用于求解模型参数的方法主要包括以下几种:

  1. 极大似然估计(Maximum Likelihood Estimation, MLE):这是一种最常见的参数估计方法。目标是找到一组参数,使得在这组参数下,观察到当前样本数据的概率最大。

  2. 贝叶斯估计(Bayesian Estimation):与MLE不同,贝叶斯估计是基于贝叶斯公式,将参数视为随机变量,以先验概率和似然函数共同决定参数的后验估计。

  3. 最小二乘法(Least Squares Method):这是一种在回归问题中常用的方法,通过最小化预测值与真实值之间的平方误差来求解模型的参数。

  4. 最大后验估计(Maximum a Posteriori, MAP):这也是一种基于贝叶斯公式的估计方法,但与MLE和贝叶斯估计不同的是,它在似然函数的基础上引入了参数的先验概率,然后求解使得后验概率最大的参数。

  5. 梯度下降法(Gradient Descent):虽然严格来说,这不是一种估计方法,但它是求解模型参数常用的优化方法。通过不断计算损失函数的梯度并按梯度方向更新参数,直到找到损失函数的最小值点。

  6. 正则化方法(Regularization):包括L1正则化(Lasso)和L2正则化(Ridge)。虽然它们本身也不是一种参数估计方法,而是一种在MLE素基础上引入的对参数大小控制的手段,但它们会使得参数的求解受到限制,从而影响参数的估计结果。

值得注意的是,这些方法不是彼此替代的关系,有时在某些模型中,可能会结合使用多种方法来求解模型参数。选择哪种方法,需要根据具体问题,特别是数据分布特性、模型的结构复杂度等因素来考虑。

相关推荐
强盛小灵通专卖员8 分钟前
DL00291-联邦学习以去中心化锂离子电池健康预测模型完整实现
人工智能·机器学习·深度强化学习·核心期刊·导师·小论文·大论文
Hello123网站16 分钟前
多墨智能-AI一键生成工作文档/流程图/思维导图
人工智能·流程图·ai工具
有Li1 小时前
CLIK-Diffusion:用于牙齿矫正的临床知识感知扩散模型|文献速递-深度学习人工智能医疗图像
人工智能·深度学习·文献·医学生
大唐荣华1 小时前
视觉语言模型(VLA)分类方法体系
人工智能·分类·机器人·具身智能
即兴小索奇1 小时前
AI应用商业化加速落地 2025智能体爆发与端侧创新成增长引擎
人工智能·搜索引擎·ai·商业·ai商业洞察·即兴小索奇
NeilNiu1 小时前
开源AI工具Midscene.js
javascript·人工智能·开源
nju_spy2 小时前
机器学习 - Kaggle项目实践(4)Toxic Comment Classification Challenge 垃圾评论分类问题
人工智能·深度学习·自然语言处理·tf-idf·南京大学·glove词嵌入·双头gru
计算机sci论文精选2 小时前
CVPR 2025 | 具身智能 | HOLODECK:一句话召唤3D世界,智能体的“元宇宙练功房”来了
人工智能·深度学习·机器学习·计算机视觉·机器人·cvpr·具身智能
ezl1fe2 小时前
RAG 每日一技(十八):手写SQL-RAG太累?LangChain的SQL智能体(Agent)前来救驾!
数据库·人工智能·后端
我星期八休息2 小时前
大模型 + 垂直场景:搜索/推荐/营销/客服领域开发新范式与技术实践
大数据·人工智能·python