一次使用threading.Thread来实现Pytorch多个模型并发运行的失败案例

文章目录

背景

我有多个pytorch GPU模型,他们有不同的参数(也就是说不是共享的),但是相同的数据输入,想要并发运行。

不并发运行,当然就是循环喽。

        for i in range(self.args.m):
            self.models[i](batch)

我想要并发,因为m有点大。像上面循环的话m=30以上速度就有点受不了了。我看过了,我的GPU还有很多空间,起码放上去10个模型没有问题。

我的做法(但证明不起效果)

我想到了多线程,如下:

class MyThread_forward(threading.Thread):  #自定义线程类
    def __init__(self, model,batch):
        threading.Thread.__init__(self)
        self.model = model              
        self.batch=batch
    def run(self):                    
        self.result=self.model(self.batch) 
    def get_result(self): 
        return self.result

def multi_thread_forward():
    threads=[]
    for  i in range(self.args.m):#创建多个线程
        threads.append(MyThread_forward(self.models[i],batch))
    for thread in threads:#各个线程开始并发运行。
        thread.start()
    for thread in threads:#等待各个线程运行完毕再执行下面代码。
        thread.join()    
    results= []
    for thread in threads:
    	results.append(thread.get_result())  #每个线程返回结果(result)加入列表中
    return results
    
multi_thread_forward()#多线程运行。

结果就是不起效果好像,还是运行得很慢,咋回事捏。

相关推荐
SmallBambooCode1 分钟前
【人工智能】【Python】在Scikit-Learn中使用KNN(K最近邻算法)
人工智能·python·机器学习·scikit-learn·近邻算法
jaffe—fly4 分钟前
【解决问题】conda 虚拟环境内,`pip list` 展示全局的包
python·conda·pip
带上一无所知的我4 分钟前
解锁Conda:Python环境与包管理的终极指南
开发语言·python·conda
changwan10 分钟前
基于Celery+Supervisord的异步任务管理方案
后端·python·性能优化
君秋水10 分钟前
Python异步编程指南:asyncio从入门到精通(Python 3.10+)
后端·python
訾博ZiBo17 分钟前
AI日报 - 2025年3月7日
人工智能
梓羽玩Python20 分钟前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT21 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼21 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人23 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程