一次使用threading.Thread来实现Pytorch多个模型并发运行的失败案例

文章目录

背景

我有多个pytorch GPU模型,他们有不同的参数(也就是说不是共享的),但是相同的数据输入,想要并发运行。

不并发运行,当然就是循环喽。

复制代码
        for i in range(self.args.m):
            self.models[i](batch)

我想要并发,因为m有点大。像上面循环的话m=30以上速度就有点受不了了。我看过了,我的GPU还有很多空间,起码放上去10个模型没有问题。

我的做法(但证明不起效果)

我想到了多线程,如下:

复制代码
class MyThread_forward(threading.Thread):  #自定义线程类
    def __init__(self, model,batch):
        threading.Thread.__init__(self)
        self.model = model              
        self.batch=batch
    def run(self):                    
        self.result=self.model(self.batch) 
    def get_result(self): 
        return self.result

def multi_thread_forward():
    threads=[]
    for  i in range(self.args.m):#创建多个线程
        threads.append(MyThread_forward(self.models[i],batch))
    for thread in threads:#各个线程开始并发运行。
        thread.start()
    for thread in threads:#等待各个线程运行完毕再执行下面代码。
        thread.join()    
    results= []
    for thread in threads:
    	results.append(thread.get_result())  #每个线程返回结果(result)加入列表中
    return results
    
multi_thread_forward()#多线程运行。

结果就是不起效果好像,还是运行得很慢,咋回事捏。

相关推荐
Moshow郑锴1 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20252 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR3 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散133 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
wyiyiyi3 小时前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945193 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
没有bug.的程序员3 小时前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋4 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
迈火4 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney