一次使用threading.Thread来实现Pytorch多个模型并发运行的失败案例

文章目录

背景

我有多个pytorch GPU模型,他们有不同的参数(也就是说不是共享的),但是相同的数据输入,想要并发运行。

不并发运行,当然就是循环喽。

复制代码
        for i in range(self.args.m):
            self.models[i](batch)

我想要并发,因为m有点大。像上面循环的话m=30以上速度就有点受不了了。我看过了,我的GPU还有很多空间,起码放上去10个模型没有问题。

我的做法(但证明不起效果)

我想到了多线程,如下:

复制代码
class MyThread_forward(threading.Thread):  #自定义线程类
    def __init__(self, model,batch):
        threading.Thread.__init__(self)
        self.model = model              
        self.batch=batch
    def run(self):                    
        self.result=self.model(self.batch) 
    def get_result(self): 
        return self.result

def multi_thread_forward():
    threads=[]
    for  i in range(self.args.m):#创建多个线程
        threads.append(MyThread_forward(self.models[i],batch))
    for thread in threads:#各个线程开始并发运行。
        thread.start()
    for thread in threads:#等待各个线程运行完毕再执行下面代码。
        thread.join()    
    results= []
    for thread in threads:
    	results.append(thread.get_result())  #每个线程返回结果(result)加入列表中
    return results
    
multi_thread_forward()#多线程运行。

结果就是不起效果好像,还是运行得很慢,咋回事捏。

相关推荐
龙腾AI白云2 分钟前
知识图谱如何在制造业实际落地应用
人工智能·知识图谱
力学与人工智能3 分钟前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
癫狂的兔子7 分钟前
【BUG】【Python】【Spider】Compound class names are not allowed.
开发语言·python·bug
娟宝宝萌萌哒12 分钟前
智能体设计模式重点
人工智能·设计模式
木头左25 分钟前
基于Backtrader框架的指数期权备兑策略实现与验证
python
乾元25 分钟前
绕过艺术:使用 GANs 对抗 Web 防火墙(WAF)
前端·网络·人工智能·深度学习·安全·架构
蝈蝈tju29 分钟前
Vibe Coding 正确姿势: 先会指挥, 再让AI干
人工智能·经验分享·ai
想你依然心痛34 分钟前
AI 换脸新纪元:Facefusion 人脸融合实战探索
人工智能·换脸·facefusion·人脸融合
李松桃35 分钟前
python第三次作业
java·前端·python