一次使用threading.Thread来实现Pytorch多个模型并发运行的失败案例

文章目录

背景

我有多个pytorch GPU模型,他们有不同的参数(也就是说不是共享的),但是相同的数据输入,想要并发运行。

不并发运行,当然就是循环喽。

复制代码
        for i in range(self.args.m):
            self.models[i](batch)

我想要并发,因为m有点大。像上面循环的话m=30以上速度就有点受不了了。我看过了,我的GPU还有很多空间,起码放上去10个模型没有问题。

我的做法(但证明不起效果)

我想到了多线程,如下:

复制代码
class MyThread_forward(threading.Thread):  #自定义线程类
    def __init__(self, model,batch):
        threading.Thread.__init__(self)
        self.model = model              
        self.batch=batch
    def run(self):                    
        self.result=self.model(self.batch) 
    def get_result(self): 
        return self.result

def multi_thread_forward():
    threads=[]
    for  i in range(self.args.m):#创建多个线程
        threads.append(MyThread_forward(self.models[i],batch))
    for thread in threads:#各个线程开始并发运行。
        thread.start()
    for thread in threads:#等待各个线程运行完毕再执行下面代码。
        thread.join()    
    results= []
    for thread in threads:
    	results.append(thread.get_result())  #每个线程返回结果(result)加入列表中
    return results
    
multi_thread_forward()#多线程运行。

结果就是不起效果好像,还是运行得很慢,咋回事捏。

相关推荐
国产化创客3 分钟前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20064 分钟前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)8 分钟前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路9 分钟前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶
qq74223498417 分钟前
Python操作数据库之pyodbc
开发语言·数据库·python
2401_841495641 小时前
【自然语言处理】轻量版生成式语言模型GPT
人工智能·python·gpt·深度学习·语言模型·自然语言处理·transformer
梵得儿SHI1 小时前
(第三篇)Spring AI 基础入门:PromptTemplate 与对话工程实战(从字符串拼接到底层模板引擎的进阶之路)
人工智能·prompt·大模型应用·spring ai·prompttemplate·ai 响应的质量与准确性·上下文管理策略
Yolo566Q1 小时前
OpenLCA生命周期评估模型构建与分析
java·开发语言·人工智能
是Yu欸1 小时前
【博资考5】网安2025
网络·人工智能·经验分享·笔记·网络安全·ai·博资考