数据预处理方法—数据标准化和数据归一化

1.数据标准化

1.1 概念:

标准化是将数据转化为均值为0,标准差为1的分布。通过标准化处理,所有特征在同一个尺度上,使得模型更加稳定和高效,尤其适用于正态(高斯)分布的数据。

1.2 原理

标准化后的数据具有相同尺度,减少特征之间量纲不一致的影响,有助于提高某些机器学习算法的性能。

1.3 核心公式

标准化公式:

其中,µ 是特征的均值,σ是特征的标准差。

假设X={X1,X2,...,Xn},其均值和标准差分别为:

1.4.python案例

创建一个包含两个特征的数据集,对数据进行标准化。

步骤:

1.创建一个随机数据集

2.对数据进行标准化

3.绘制标准化前后的数据分布直方图

4.绘制标准化前后的数据散点图

scikit-learn 中,我们可以使用sklearn.preprocessing 模块中的StandardScaler类实现数据标准化。

python 复制代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
# 1. 创建一个随机数据集
np.random.seed(0)
data = np.random.rand(100, 2) * 1000
# 创建一个DataFrame
df = pd.DataFrame(data, columns=['Feature1', 'Feature2'])
# 2. 对数据进行标准化
scaler = StandardScaler()
data_standardized = scaler.fit_transform(data)
# 创建标准化后的DataFrame
df_standardized = pd.DataFrame(data_standardized, columns=['Feature1',colour='bule')
plt.hist(df_standardized['Feature2'], bins=20, alpha=0.7, label='Feature2',color='green')
# 3. 绘制标准化前后的数据分布直方图
plt.figure(figsize=(12,6))
# 标准化前
plt.subplot(1,2,1)
plt.hist(df['Feature1'], bins=20, alpha=0.7, label='Feature1', color='blue')
plt.hist(df['Feature2'], bins=20, alpha=0.7, label='Feature2', color='green')
plt.title('Before Standardization')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.legend()
# 标准化后
plt.subplot(1, 2, 2)
plt.hist(df_standardized['Feature1'], bins=20, alpha=0.7, label='Feature1',color='blue')

plt.hist(df_standardized['Feature2'], bins=20, alpha=0.7, label='Feature2',color='green')
plt.title('After Standardization')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.legend()
plt.tight_layout()
plt.show()
# 4. 绘制标准化前后的数据散点图
plt.figure(figsize=(12, 6))
# 标准化前
plt.subplot(1, 2, 1)
plt.scatter(df['Feature1'], df['Feature2'], color='blue', alpha=0.7)
plt.title('Before Standardization')
plt.xlabel('Feature1')
plt.ylabel('Feature2')
# 标准化后
plt.subplot(1, 2, 2)
plt.scatter(df_standardized['Feature1'], df_standardized['Feature2'],color='red',alpha=0.7)
plt.title('After Standardization')
plt.xlabel('Feature1')
plt.ylabel('Feature2')
plt.tight_layout()
plt.show()

输出结果:

2.数据归一化

2.1 概念

归一化是将数据缩放到特定范围(通常是[0,1]),特别适用于距离度量敏感的算法

2.2 原理

归一化后的数据每个特征的取值范围相同,有助于提高某些机器学习算法的性能。

2.3 核心公式

归一化公式:

其中,Xmax和Xmin分别是特征的最大值和最小值。

假设X={X1,X2,...Xn},其最小值和最大值分别为:

Xmin=min(X)

Xmax=max(X)

注意:我们也可以通过公式将数据压缩到其他指定的范围[a,b]:

其中,a和b是目标范围的上下界。

2.4 Python案例

当涉及到数据预处理中的归一化,一个经典的案例就是处理不同尺度或者有明显数值差异的的特征 。我们可以用鸢尾花数据集来演示。这个数据集包含了三种不同品种的鸢尾花,每种花有四个特征:花萼长度,花萼宽度,花瓣长度和花瓣宽度。

这里使用python和一些常见的数据科学库来演示归一化过程,并且展示归一化前后的数据分布情况

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import MinMaxScaler
# 加载鸢尾花数据集
iris=datasets.load_iris()
X=iris.data # 特征数据
# 创建MinMaxScaler对象
scaler = MinMaxScaler()
# 对数据集进行归一化
X_normalized = scaler.fit_transform(X)
# 可视化归一化前后的数据分布
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
# 归一化前的数据分布
ax1.scatter(X[:,0],X[:,1],c=iris.target)
ax1.set_title('Before Normalization')
ax1.set_xlabel('Sepal Length (cm)')
ax1.set_ylabel('Sepal Width (cm)')
# 归一化后的数据分布
ax2.scatter(X_normalized[:,0],X_normalized[:,1],c=iris.target)
ax2.set_title('After Normalization')
ax2.set_xlabel('Sepal Length (normalized)')
ax2.set_ylabel('Sepal Width (normalized)')
plt.tight_layout()
plt.show()

输出结果

3.标准化和归一化对比

标准化和归一化都能实现对数据的缩放,不过它们各自的功能以及适用场景并不一样。

相关推荐
一招定胜负1 分钟前
项目案例:卷积神经网络实现食物图片分类代码详细解析
人工智能·分类·cnn
景联文科技2 分钟前
景联文 × 麦迪:归一医疗数据枢纽,构建AI医疗新底座
大数据·人工智能·数据标注
wyg_0311135 分钟前
机器问道:大模型RAG 解读凡人修仙传
人工智能·python·transformer
未来之窗软件服务5 分钟前
幽冥大陆(七十九)Python 水果识别训练视频识别 —东方仙盟练气期
开发语言·人工智能·python·水果识别·仙盟创梦ide·东方仙盟
weixin_462446236 分钟前
用 python -m ensurepip --upgrade 修复 uv / venv 中缺失 pip 的问题
python·pip·uv
光影少年23 分钟前
AI前端开发需要会哪些及未来发展?
前端·人工智能·前端框架
hqyjzsb27 分钟前
2026年AI证书选择攻略:当“平台绑定”与“能力通用”冲突,如何破局?
大数据·c语言·人工智能·信息可视化·职场和发展·excel·学习方法
独自归家的兔28 分钟前
基于 cosyvoice-v3-plus 的简单语音合成
人工智能·后端·语音复刻
民乐团扒谱机28 分钟前
【微实验】Python——量子增强时频传递的精度量化
人工智能·python·aigc·量子力学·时空·参数敏感性·光量子
G***技30 分钟前
杰和IB3-771:以RK3588赋能机场巡检机器人
人工智能·物联网