【6DRepNet360全范围头部姿态估计onnxruntime推理】

6DRepNet360全范围头部姿态估计

这篇论文的核心内容是关于一种用于全范围旋转头部姿态估计的新方法。以下是关键点的总结:

标题
  • Towards Robust and Unconstrained Full Range of Rotation Head Pose Estimation
摘要
  • 提出了一种新的方法,用于在没有约束的情况下估计全范围旋转的头部姿态。
  • 引入了旋转矩阵形式来解决模糊的旋转标签问题,并提出了一种连续的6D旋转矩阵表示方法,以实现高效且鲁棒的直接回归。
  • 通过新累积的训练数据集和基于测地线的损失函数,设计了一个能够预测更广泛头部姿态的高级模型。
  • 在公共数据集上的广泛评估表明,该方法在效率和鲁棒性方面显著优于其他最先进的方法。
关键词
  • 头部姿态估计
  • 全范围旋转
  • 旋转矩阵
  • 6D表示
  • 测地线损失
主要贡献
  1. 提出了一种简化且高效的6参数旋转矩阵表示方法,用于准确回归头部姿态,避免了歧义问题。
  2. 提出了一种基于测地距离的方法,用于网络惩罚,以封装训练损失在特殊正交群SO(3)流形几何内。
  3. 利用CMU Panoptic数据集扩展了传统的300W-LP头部姿态数据集,包含了全头部姿态旋转数据。
  4. 创建了一个新的头部姿态预测模型,其预测范围超过了当前方法,并且在常见测试数据集上实现了更低的误差。
  5. 在多个实验设置中展示了该方法在准确性和鲁棒性方面的优势。
  6. 进行了消融研究,以评估模型的每个组成部分对结果的影响。
方法概述
  • 使用了旋转矩阵作为旋转表示,以克服欧拉角和四元数表示中的歧义和不连续性问题。
  • 提出了一种基于测地距离的损失函数,以稳定学习过程。
  • 利用CMU Panoptic数据集和300W-LP数据集,创建了一个新的数据集,用于训练模型。
实验
  • 在多个公共数据集上进行了广泛的评估,包括AFLW2000、BIWI和CMU Panoptic数据集。
  • 与当前最先进的方法进行了比较,证明了该方法在准确性和鲁棒性方面的优势。
结论
  • 该研究解决了全范围头部姿态估计的挑战,并提出了一种新的6D旋转矩阵表示方法,该方法在准确性和鲁棒性方面都取得了显著的改进。

  • 源码:https://github.com/thohemp/6DRepNet360

模型转换和onnxruntime推理

将官网的模型Fine-tuned on 300W-LP + Panoptic,Fine-tuned on 300W-LP转为onnx后,使用onnxruntime运行,全部实现代码如下;

​​

  • 安装依赖,只需要安装一下几个包即可运行

    pip install numpy onnxruntime-gpu tqdm opencv-python

  • 可以在添加人头检测或者人脸检测模型首先提取人头框,并外扩一定区域后送入到人头姿态估计模型中推理;

模型和代码下载

可视化结果

人头姿态估计

代码
python 复制代码
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import copy
import os
import sys
import cv2
import numpy as np
import torch
import onnxruntime as ort
from math import cos, sin
#from torch.utils.serialization import load_lua
import scipy.io as sio
from tqdm import tqdm

sys.path.append(os.getcwd())


def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.):
    # Input is a cv2 image
    # pose_params: (pitch, yaw, roll, tdx, tdy)
    # Where (tdx, tdy) is the translation of the face.
    # For pose we have [pitch yaw roll tdx tdy tdz scale_factor]

    p = pitch * np.pi / 180
    y = -(yaw * np.pi / 180)
    r = roll * np.pi / 180
    if tdx != None and tdy != None:
        face_x = tdx - 0.50 * size 
        face_y = tdy - 0.50 * size

    else:
        height, width = img.shape[:2]
        face_x = width / 2 - 0.5 * size
        face_y = height / 2 - 0.5 * size

    x1 = size * (cos(y) * cos(r)) + face_x
    y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y 
    x2 = size * (-cos(y) * sin(r)) + face_x
    y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y
    x3 = size * (sin(y)) + face_x
    y3 = size * (-cos(y) * sin(p)) + face_y

    # Draw base in red
    cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3, cv2.LINE_AA)
    cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3, cv2.LINE_AA)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3, cv2.LINE_AA)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3, cv2.LINE_AA)
    # Draw pillars in blue
    cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2, cv2.LINE_AA)
    # Draw top in green
    cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2, cv2.LINE_AA)
    cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2, cv2.LINE_AA)

    return img


def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100):

    pitch = pitch * np.pi / 180
    yaw = -(yaw * np.pi / 180)
    roll = roll * np.pi / 180

    if tdx != None and tdy != None:
        tdx = tdx
        tdy = tdy
    else:
        height, width = img.shape[:2]
        tdx = width / 2
        tdy = height / 2

    # X-Axis pointing to right. drawn in red
    x1 = size * (cos(yaw) * cos(roll)) + tdx
    y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy

    # Y-Axis | drawn in green
    #        v
    x2 = size * (-cos(yaw) * sin(roll)) + tdx
    y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy

    # Z-Axis (out of the screen) drawn in blue
    x3 = size * (sin(yaw)) + tdx
    y3 = size * (-cos(yaw) * sin(pitch)) + tdy

    cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),4, cv2.LINE_AA)
    cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),4, cv2.LINE_AA)
    cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),4, cv2.LINE_AA)

    return img


def get_pose_params_from_mat(mat_path):
    # This functions gets the pose parameters from the .mat
    # Annotations that come with the Pose_300W_LP dataset.
    mat = sio.loadmat(mat_path)
    # [pitch yaw roll tdx tdy tdz scale_factor]
    pre_pose_params = mat['Pose_Para'][0]
    # Get [pitch, yaw, roll, tdx, tdy]
    pose_params = pre_pose_params[:5]
    return pose_params

def get_ypr_from_mat(mat_path):
    # Get yaw, pitch, roll from .mat annotation.
    # They are in radians
    mat = sio.loadmat(mat_path)
    # [pitch yaw roll tdx tdy tdz scale_factor]
    pre_pose_params = mat['Pose_Para'][0]
    # Get [pitch, yaw, roll]
    pose_params = pre_pose_params[:3]
    return pose_params

def get_pt2d_from_mat(mat_path):
    # Get 2D landmarks
    mat = sio.loadmat(mat_path)
    pt2d = mat['pt2d']
    return pt2d

# batch*n
def normalize_vector(v):
    batch = v.shape[0]
    v_mag = torch.sqrt(v.pow(2).sum(1))# batch
    gpu = v_mag.get_device()
    if gpu < 0:
        eps = torch.autograd.Variable(torch.FloatTensor([1e-8])).to(torch.device('cpu'))
    else:
        eps = torch.autograd.Variable(torch.FloatTensor([1e-8])).to(torch.device('cuda:%d' % gpu))
    v_mag = torch.max(v_mag, eps)
    v_mag = v_mag.view(batch,1).expand(batch,v.shape[1])
    v = v/v_mag
    return v
  
# u, v batch*n
def cross_product(u, v):
    batch = u.shape[0]
    #print (u.shape)
    #print (v.shape)
    i = u[:,1]*v[:,2] - u[:,2]*v[:,1]
    j = u[:,2]*v[:,0] - u[:,0]*v[:,2]
    k = u[:,0]*v[:,1] - u[:,1]*v[:,0]
    
    out = torch.cat((i.view(batch,1), j.view(batch,1), k.view(batch,1)),1) #batch*3
    
    return out
    
  
#poses batch*6
#poses
def compute_rotation_matrix_from_ortho6d(poses):
    x_raw = poses[:,0:3] #batch*3
    y_raw = poses[:,3:6] #batch*3

    x = normalize_vector(x_raw) #batch*3
    z = cross_product(x,y_raw) #batch*3
    z = normalize_vector(z) #batch*3
    y = cross_product(z,x) #batch*3
    
    x = x.view(-1,3,1)
    y = y.view(-1,3,1)
    z = z.view(-1,3,1)
    matrix = torch.cat((x,y,z), 2) #batch*3*3
    return matrix


#input batch*4*4 or batch*3*3
#output torch batch*3 x, y, z in radiant
#the rotation is in the sequence of x,y,z
def compute_euler_angles_from_rotation_matrices(rotation_matrices):
    batch = rotation_matrices.shape[0]
    R = rotation_matrices
    sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0])
    singular = sy<1e-6
    singular = singular.float()
    
    x = torch.atan2(R[:,2,1], R[:,2,2])
    y = torch.atan2(-R[:,2,0], sy)
    z = torch.atan2(R[:,1,0],R[:,0,0])
  
    xs = torch.atan2(-R[:,1,2], R[:,1,1])
    ys = torch.atan2(-R[:,2,0], sy)
    zs = R[:,1,0]*0
    
    gpu = rotation_matrices.get_device()
    if gpu < 0:
        out_euler = torch.autograd.Variable(torch.zeros(batch,3)).to(torch.device('cpu'))
    else:
        out_euler = torch.autograd.Variable(torch.zeros(batch,3)).to(torch.device('cuda:%d' % gpu))
    out_euler[:,0] = x*(1-singular)+xs*singular
    out_euler[:,1] = y*(1-singular)+ys*singular
    out_euler[:,2] = z*(1-singular)+zs*singular
    
    return out_euler


def get_R(x,y,z):
    ''' Get rotation matrix from three rotation angles (radians). right-handed.
    Args:
        angles: [3,]. x, y, z angles
    Returns:
        R: [3, 3]. rotation matrix.
    '''
    # x
    Rx = np.array([[1, 0, 0],
                   [0, np.cos(x), -np.sin(x)],
                   [0, np.sin(x), np.cos(x)]])
    # y
    Ry = np.array([[np.cos(y), 0, np.sin(y)],
                   [0, 1, 0],
                   [-np.sin(y), 0, np.cos(y)]])
    # z
    Rz = np.array([[np.cos(z), -np.sin(z), 0],
                   [np.sin(z), np.cos(z), 0],
                   [0, 0, 1]])

    R = Rz.dot(Ry.dot(Rx))
    return R


if __name__ == '__main__':
    onnx_path = "./snapshots/6DRepNet360_Full-Rotation_300W_LP+Panoptic_1.onnx"
    vid_file = "./test_vid/11-FemaleGlasses.avi.avi"
    vid_result_path = './test_vid_result'
  
    vid_save_file = os.path.join(vid_result_path, os.path.basename(vid_file))
    if not os.path.exists(vid_result_path):
        os.makedirs(vid_result_path)
    device=torch.device(0) if torch.cuda.is_available() else torch.device('cpu')
    ort_session = ort.InferenceSession(onnx_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
    cap = cv2.VideoCapture(vid_file)
    nums = cap.get(cv2.CAP_PROP_FRAME_COUNT)
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = cap.get(cv2.CAP_PROP_FPS)
    ret, frame = cap.read()
    # import pdb;pdb.set_trace()
    out = cv2.VideoWriter(vid_save_file, cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height))
    for i in tqdm(range(int(nums))):
        ret, img = cap.read()
        if not ret or img is None:
            break
        # 125, 45 410, 350
        image = copy.deepcopy(img)
        img = img[45:250, 125:410]  # 根据人头位置更改
        img = cv2.resize(img, (224, 224), interpolation=cv2.INTER_LINEAR)
        img = np.array(img)
        img = torch.tensor(img.transpose(2, 0, 1).astype('float32')).unsqueeze(0)
        # mean = [0., 0., 0.]
        # std = [1.0, 1.0, 1.0]
        mean=[0.485, 0.456, 0.406]
        std=[0.229, 0.224, 0.225]
        img = img / 255

        mean = torch.tensor(mean).reshape(1, 3, 1, 1)
        std = torch.tensor(std).reshape(1, 3, 1, 1)
        img = (img - mean) / std

        inputs = {ort_session.get_inputs()[0].name: img.numpy()}
        outs = ort_session.run(None, inputs)
    
        R_pred = compute_rotation_matrix_from_ortho6d(torch.Tensor(outs[0]).to(device))
        euler = compute_euler_angles_from_rotation_matrices(R_pred) * 180 / np.pi
        p_pred_deg = euler[:, 0].cpu()
        y_pred_deg = euler[:, 1].cpu()
        r_pred_deg = euler[:, 2].cpu()

        draw_axis(image, y_pred_deg[0], p_pred_deg[0], r_pred_deg[0], tdx=60, tdy=100, size=50)
        plot_pose_cube(image, y_pred_deg[0], p_pred_deg[0], r_pred_deg[0] ,size=50)
        txt = "pitch: %.4f, yaw: %.4f, roll: %.4f" % (float(p_pred_deg[0]), float(y_pred_deg[0]), float(r_pred_deg[0]))
        image = cv2.putText(image, txt, (int(50), int(40)), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5,
                              color=(0, 255, 0), thickness=2)

        out.write(image)
    out.release()
相关推荐
AI科技大本营4 分钟前
Anthropic四大专家“会诊”:实现深度思考不一定需要多智能体,AI完美对齐比失控更可怕!...
人工智能·深度学习
Damon小智5 分钟前
合合信息DocFlow产品解析与体验:人人可搭建的AI自动化单据处理工作流
图像处理·人工智能·深度学习·机器学习·ai·自动化·docflow
孤独且没人爱的纸鹤23 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
小深ai硬件分享2 小时前
Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
服务器·人工智能·深度学习
盼小辉丶9 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记9 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
AI街潜水的八角10 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
池央15 小时前
DCGAN - 深度卷积生成对抗网络:基于卷积神经网络的GAN
深度学习·生成对抗网络·cnn
scdifsn15 小时前
动手学深度学习11.6. 动量法-笔记&练习(PyTorch)
pytorch·笔记·深度学习
羊小猪~~16 小时前
深度学习基础--LSTM学习笔记(李沐《动手学习深度学习》)
人工智能·rnn·深度学习·学习·机器学习·gru·lstm