梯度计算中的一些算子

一、sobel算子

算子矩阵:

复制代码
# sobel算子 算梯度
# Gx = 右边-左边;Gy = 下边 - 上边
import cv2

def cv_show(name, img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

img_people = cv2.imread('people.png', cv2.IMREAD_GRAYSCALE)
cv_show('img_people', img_people)
原图结果:

# dst = cv2.Sobel(src, ddepth, dx, dy, ksize)
# ddepth:图像的深度,ksiz是sobel算子的大小,cv2.CV_64F 是一种浮点数类型,表示为64位的浮点数
# 1, 0 表示的就是在x方向上做,而y方向上不做
sobelx = cv2.Sobel(img_people, cv2.CV_64F, 1, 0, ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
Gx的结果:

sobely = cv2.Sobel(img_people, cv2.CV_64F, 0, 1, ksize=3)
sobely = cv2.convertScaleAbs(sobely)
Gy的结果:

cv_show('Gx', sobelx)
cv_show('Gy', sobely)
# G = Gx+Gy
# 分别计算x与y,再求和
sobelxy = cv2.addWeighted(sobelx,0.5, sobely, 0.5, 0)
cv_show('G', sobelxy)
G的结果:
# 不建议直接计算
# 计算效果提取出来的边缘不明显
sobelxy = cv2.Sobel(img_people, cv2.CV_64F, 1, 1, ksize=3)
# 有正有负,使用convertScaleAbs
sobelxy = cv2.convertScaleAbs(sobelxy)
cv_show('直接计算G', sobelxy)

G直接计算的结果:

二、Scharr算子与laplacian算子

计算矩阵中的数值变得更大,代码执行的结果更为丰富。laplacian算子,对噪声更敏感。

Scharr算子:

laplacian算子:

复制代码
# 不同算子的差异
sobelx = cv2.Sobel(img_people, cv2.CV_64F, 1, 0, ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img_people, cv2.CV_64F, 0, 1, ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5, sobely, 0.5, 0)

Scharr算子:
scharrx = cv2.Scharr(img_people, cv2.CV_64F, 1, 0)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.Scharr(img_people, cv2.CV_64F, 0, 1)
scharry = cv2.convertScaleAbs(sobely)
scharrxy = cv2.addWeighted(sobelx,0.5, scharry, 0.5, 0)

laplacian算子:(没有x与y方向)
laplacian = cv2.Laplacian(img_people, cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)
res = np.hstack((sobelxy, scharrxy, laplacian))
cv_show('res', res)
相关推荐
Coovally AI模型快速验证8 分钟前
未来已来:从 CVPR & ICCV 观察 2025→2026 年计算机视觉的七大走向
人工智能·深度学习·目标检测·计算机视觉·stable diffusion
烤奶要加冰9 分钟前
PyCharm 社区版全平台安装指南
ide·windows·python·pycharm·mac
Siren_dream11 分钟前
anaconda与pycharm
ide·python·pycharm
whale fall12 分钟前
Windows下PyCharm如何激活python的虚拟环境
ide·python·pycharm
Geo_V20 分钟前
提示词工程
人工智能·python·算法·ai
B站_计算机毕业设计之家43 分钟前
计算机视觉:python车辆行人检测与跟踪系统 YOLO模型 SORT算法 PyQt5界面 目标检测+目标跟踪 深度学习 计算机✅
人工智能·python·深度学习·算法·yolo·目标检测·机器学习
Doc.S1 小时前
【保姆级教程】在AutoDL容器中部署EGO-Planner,实现无人机动态避障规划
人工智能·python·信息可视化·机器人
Predestination王瀞潞2 小时前
Python3:Eighth 函数
开发语言·python
蒋星熠2 小时前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类
xier_ran2 小时前
Python从入门到精通:(2)Python 核心进阶教程从数据结构到面向对象
linux·windows·python·microsoft