大模型-模型预训练-预训练任务

一、简介

1、预训练任务目的

设计合适的自监督训练任务,使得模型能够从海量五标注数据中学习到广泛的语义知识与世界知识

2、常见预训练任务
  • 语言建模
  • 去噪自编码
  • 混合去噪器

二、语言建模

1、特点
  • 被目前绝大多数模型采用
  • 核心在于预测下一个词元
  • 经常被用于训练基于解码器架构的大模型
  • 是一种多任务学习过程,可同时学习到生成时用到的相关知识与能力
2、任务内容

基于前序内容生成或预测后续内容

3、变种
  • 前缀语言建模
    • 特点:主要应用与采用前缀解码器架构的大模型
    • 缺点:由于总损失仅计算后缀词元,性能稍逊于使用标准语言建模任务进行预训练的模型
  • 中间任务填充
    • 任务内容:训练模型对于中间部分文本的预测生成能力
    • 特点:
      • 常用于作为标准语言建模任务的辅助任务
      • 通常用于训练代码预训练模型,提升模型代码补全能力
4、应用情况
  • 应用范围:被绝大部分大模型采用
  • 代表模型:GPT

三、去噪自编码

1、特点
  • 实现比语言建模复杂,需要设定额外的优化策略,如词元替换策略、替换片段长度、替换词元比例
2、任务内容

输入文本经过一系列替换或删除,形成损坏文本,模型任务目标是根据损坏文本恢复出被替换或删除的片段

3、应用情况
  • 应用范围:比语言建模应用少
  • 代表模型:BERT、T5等模型

四、混合去噪器

1、任务内容

又称UL2损失,通过将语言建模和去噪自编码的目标均视为不同的去噪任务,对于预训练任务进行了统一建模

2、组成
  • S-去噪器
  • R-去噪器
  • X-去噪器
3、特点
  • S-去噪器与前缀语言建模目标相同
  • R-去噪器、X-去噪器与去噪自编码目标相似,二者在被掩盖(删除)片段的跨度以及损坏比例上有区别,R-去噪器掩盖比例约为15%,每个被掩盖片段包含3-5个词元;X-去噪器掩盖比例约为50%,每个被掩盖片段包含12个词元以上
4、如何选择去噪器

在句子开头设置特定词元(比如R、X、S)标记去噪器类型

5、应用情况
  • 应用范围:较小
  • 代表模型:UL2、PaLM2等
相关推荐
蹦蹦跳跳真可爱5891 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
蚂蚁20143 小时前
卷积神经网络(二)
人工智能·计算机视觉
z_mazin5 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
lixy5795 小时前
深度学习3.7 softmax回归的简洁实现
人工智能·深度学习·回归
youhebuke2256 小时前
利用deepseek快速生成甘特图
人工智能·甘特图·deepseek
訾博ZiBo6 小时前
AI日报 - 2025年04月26日
人工智能
郭不耐6 小时前
DeepSeek智能时空数据分析(三):专业级地理数据可视化赏析-《杭州市国土空间总体规划(2021-2035年)》
人工智能·信息可视化·数据分析·毕业设计·数据可视化·城市规划
AI军哥6 小时前
MySQL8的安装方法
人工智能·mysql·yolo·机器学习·deepseek
余弦的倒数6 小时前
知识蒸馏和迁移学习的区别
人工智能·机器学习·迁移学习
Allen Bright6 小时前
【机器学习-线性回归-2】理解线性回归中的连续值与离散值
人工智能·机器学习·线性回归