基于Pytorch框架的深度学习MODNet网络精细人像分割系统源码

第一步:准备数据

人像精细分割数据,可分割出头发丝,为PPM-100开源数据

第二步:搭建模型

MODNet网络结构如图所示,主要包含3个部分:semantic estimation(S分支)、detail prediction(D分支)、semantic-detail fusion(F分支)。

网络结构简单描述一下:

输入一幅图像I,送入三个模块:S、D、F;

S模块:在低分辨率分支进行语义估计,在backbone最后一层输出接上e-ASPP得到语义feature map Sp;

D模块:在高分辨率分支进行细节预测,通过融合来自低分辨率分支的信息得到细节feature map Dp;

F模块:融合来自低分辨率分支和高分辨率分支的信息,得到alpha matte ap;

对S、D、F模块,均使用来自GT的显式监督信息进行监督训练。

第三步:代码

1)损失函数为:L2损失

2)网络代码:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

from .backbones import SUPPORTED_BACKBONES


#------------------------------------------------------------------------------
#  MODNet Basic Modules
#------------------------------------------------------------------------------

class IBNorm(nn.Module):
    """ Combine Instance Norm and Batch Norm into One Layer
    """

    def __init__(self, in_channels):
        super(IBNorm, self).__init__()
        in_channels = in_channels
        self.bnorm_channels = int(in_channels / 2)
        self.inorm_channels = in_channels - self.bnorm_channels

        self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
        self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
        
    def forward(self, x):
        bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
        in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())

        return torch.cat((bn_x, in_x), 1)


class Conv2dIBNormRelu(nn.Module):
    """ Convolution + IBNorm + ReLu
    """

    def __init__(self, in_channels, out_channels, kernel_size, 
                 stride=1, padding=0, dilation=1, groups=1, bias=True, 
                 with_ibn=True, with_relu=True):
        super(Conv2dIBNormRelu, self).__init__()

        layers = [
            nn.Conv2d(in_channels, out_channels, kernel_size, 
                      stride=stride, padding=padding, dilation=dilation, 
                      groups=groups, bias=bias)
        ]

        if with_ibn:       
            layers.append(IBNorm(out_channels))
        if with_relu:
            layers.append(nn.ReLU(inplace=True))

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x) 


class SEBlock(nn.Module):
    """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf 
    """

    def __init__(self, in_channels, out_channels, reduction=1):
        super(SEBlock, self).__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, int(in_channels // reduction), bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels // reduction), out_channels, bias=False),
            nn.Sigmoid()
        )
    
    def forward(self, x):
        b, c, _, _ = x.size()
        w = self.pool(x).view(b, c)
        w = self.fc(w).view(b, c, 1, 1)

        return x * w.expand_as(x)


#------------------------------------------------------------------------------
#  MODNet Branches
#------------------------------------------------------------------------------

class LRBranch(nn.Module):
    """ Low Resolution Branch of MODNet
    """

    def __init__(self, backbone):
        super(LRBranch, self).__init__()

        enc_channels = backbone.enc_channels
        
        self.backbone = backbone
        self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
        self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
        self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
        self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)

    def forward(self, img, inference):
        enc_features = self.backbone.forward(img)
        enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]

        enc32x = self.se_block(enc32x)
        lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
        lr16x = self.conv_lr16x(lr16x)
        lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
        lr8x = self.conv_lr8x(lr8x)

        pred_semantic = None
        if not inference:
            lr = self.conv_lr(lr8x)
            pred_semantic = torch.sigmoid(lr)

        return pred_semantic, lr8x, [enc2x, enc4x] 


class HRBranch(nn.Module):
    """ High Resolution Branch of MODNet
    """

    def __init__(self, hr_channels, enc_channels):
        super(HRBranch, self).__init__()

        self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
        self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)

        self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
        self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)

        self.conv_hr4x = nn.Sequential(
            Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
        )

        self.conv_hr2x = nn.Sequential(
            Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
        )

        self.conv_hr = nn.Sequential(
            Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
            Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
        )

    def forward(self, img, enc2x, enc4x, lr8x, inference):
        img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
        img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)

        enc2x = self.tohr_enc2x(enc2x)
        hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))

        enc4x = self.tohr_enc4x(enc4x)
        hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))

        lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
        hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))

        hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
        hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))

        pred_detail = None
        if not inference:
            hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
            hr = self.conv_hr(torch.cat((hr, img), dim=1))
            pred_detail = torch.sigmoid(hr)

        return pred_detail, hr2x


class FusionBranch(nn.Module):
    """ Fusion Branch of MODNet
    """

    def __init__(self, hr_channels, enc_channels):
        super(FusionBranch, self).__init__()
        self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
        
        self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
        self.conv_f = nn.Sequential(
            Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
            Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
        )

    def forward(self, img, lr8x, hr2x):
        lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
        lr4x = self.conv_lr4x(lr4x)
        lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)

        f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
        f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
        f = self.conv_f(torch.cat((f, img), dim=1))
        pred_matte = torch.sigmoid(f)

        return pred_matte


#------------------------------------------------------------------------------
#  MODNet
#------------------------------------------------------------------------------

class MODNet(nn.Module):
    """ Architecture of MODNet
    """

    def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
        super(MODNet, self).__init__()

        self.in_channels = in_channels
        self.hr_channels = hr_channels
        self.backbone_arch = backbone_arch
        self.backbone_pretrained = backbone_pretrained

        self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)

        self.lr_branch = LRBranch(self.backbone)
        self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
        self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                self._init_conv(m)
            elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
                self._init_norm(m)

        if self.backbone_pretrained:
            self.backbone.load_pretrained_ckpt()                

    def forward(self, img, inference):
        pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
        pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
        pred_matte = self.f_branch(img, lr8x, hr2x)

        return pred_semantic, pred_detail, pred_matte
    
    def freeze_norm(self):
        norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
        for m in self.modules():
            for n in norm_types:
                if isinstance(m, n):
                    m.eval()
                    continue

    def _init_conv(self, conv):
        nn.init.kaiming_uniform_(
            conv.weight, a=0, mode='fan_in', nonlinearity='relu')
        if conv.bias is not None:
            nn.init.constant_(conv.bias, 0)

    def _init_norm(self, norm):
        if norm.weight is not None:
            nn.init.constant_(norm.weight, 1)
            nn.init.constant_(norm.bias, 0)

第四步:搭建GUI界面

第五步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码见:基于Pytorch框架的深度学习MODNet网络精细人像分割系统源码

有问题可以私信或者留言,有问必答

相关推荐
lilu88888881 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜1 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记1 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记1 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜1 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、2 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营2 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao3 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain3 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉
人类群星闪耀时3 小时前
用深度学习优化供应链管理:让算法成为商业决策的引擎
人工智能·深度学习·算法