大家好久不见,我是残念,希望在你看完之后,能对你有所帮助,有什么不足请指正!共同学习交流
本文由:残念ing原创CSDN首发,如需要转载请通知
个人主页:残念ing-CSDN博客,欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:残念ing 的C++系列专栏------CSDN博客
vectord的介绍及使用
vector的介绍
- vector是表示可变大小数组的序列容器。
- 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
- 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
- vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
- 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
- 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好
vector的使用
vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的
vector的定义
vector iterator 的使用
iterator的使用 | 接口说明 |
---|---|
begin +end(重点) | 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator |
rbegin + rend | 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator |
vector空间增长问题
- capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义
的。vs是PJ版本STL,g++是SGI版本STL。 - reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
- resize在开空间的同时还会进行初始化,影响size。
cpp
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVectorExpandOP()
{
vector<int> v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
vector 增删查改
vector 迭代器失效问题(*重点)
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装 ,比如:vector的迭代器就是原生态指针T * 。因此迭代器失效 ,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间 ,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
可能会出现的一些情况:
- 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等。
cpp
#include <iostream>
using namespace std;
#include <vector>
int main()
{
vector<int> v{ 1,2,3,4,5,6 };
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);
/*
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,
而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的
空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新
赋值即可。
*/
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
- 指定位置元素的删除操作--erase
cpp
#include <iostream>
using namespace std;
#include <vector>
int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}
erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
- 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
cpp
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
vector<int> v{ 1,2,3,4,5 };
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
auto it = v.begin();
cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效
v.reserve(100);
cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
// 虽然可能运行,但是输出的结果是不对的
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
cpp
// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{
vector<int> v{ 1,2,3,4,5 };
vector<int>::iterator it = find(v.begin(), v.end(), 3);
v.erase(it);
cout << *it << endl;
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
return 0;
}
cpp
// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{
vector<int> v{ 1,2,3,4,5 };
// vector<int> v{1,2,3,4,5,6};
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
v.erase(it);
++it;
}
for (auto e : v)
cout << e << " ";
cout << endl;
return 0;
}
从上面的代码运行结果我们可以看到:在迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it标准begin和end范围内,肯定会崩溃。
- 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
cpp
#include <string>
void TestString()
{
string s("hello");
auto it = s.begin();
// 放开之后代码会崩溃,因为resize到20会string会进行扩容
// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
// 后序打印时,再访问it指向的空间程序就会崩溃
//s.resize(20, '!');
while (it != s.end())
{
cout << *it;
++it;
}
cout << endl;
it = s.begin();
while (it != s.end())
{
it = s.erase(it);
// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
// it位置的迭代器就失效了
// s.erase(it);
++it;
}
}
迭代器失效的解决办法:在使用前,对迭代器重新赋值即可
vector 在OJ中的使用
- 只出现一次的数字i
cpp
class Solution {
public:
int singleNumber(vector<int>& nums) {
int value = 0;
for (auto e : v)
{
value ^= e;
}
return value;
}
};
vector的模拟实现
vector的模拟实现bir::vector
cpp
//vector.h
#pragma once
#include<iostream>
using namespace std;
#include<string.h>
#include<assert.h>
namespace bit
{
template<class T>
class vector
{
public:
typedef T* interator;
typedef T* const_interator;
const_interator begin() const
{
return _start;
}
const_interator end() const
{
return _finish;
}
interator begin()
{
return _start;
}
interator end()
{
return _finish;
}
//强制让编译器生成默认的构造函数
vector() = default;
vector(const vector<T>& v)
{
for (auto e : v)
{
push_back(e);
}
}
void swap(vector<T>& v)
{
std::swap(_start , v._start);
std::swap(_finish ,v. _finish);
std::swap(_end_of_storage , v._end_of_storage);
}
vector<T>& operator=(vector<T> v)
{
swap(v);
return *this;
}
/*~vector()
{
delete[]_start;
free(_start);
_finish = _end_of_storage = nullptr;
}*/
void reserve(size_t n)
{
if (n > capacity())
{
size_t oldsize = size();
T* tmp = new T[n];
if (_start)
{
memcpy(tmp, _start, sizeof(T) * size());
delete[]_start;
}
/*_finish = tmp + size();
_start = tmp;
_end_of_storage = _start + n;*/
_start = tmp;
_finish = _start + oldsize;
_end_of_storage = _start + n;
}
}
size_t capacity()
{
return _end_of_storage - _start;
}
size_t size()
{
return _finish - _start;
}
T& operator[](size_t i)
{
assert(i < size());
return _start[i];
}
void push_back(const T& x)
{
if (_finish == _end_of_storage)
{
size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newcapacity);
}
*_finish = x;
++_finish;
}
void pop_back()
{
assert(size() > 0);
--_finish;
}
interator insert(interator pos, const T& x)
{
assert(pos >= _start);
assert(pos <= _finish);
if (_finish == _end_of_storage)
{
size_t len = pos - _start;
size_t newcapacity = capacity() == 0 ? 4 : capacity() * 2;
reserve(newcapacity);
pos = len + _start;
}
interator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
end--;
}
*pos = x;
++_finish;
return pos;
}
interator erase(interator pos)
{
assert(pos >= _start);
assert(pos < _finish);
interator it = pos + 1;
while (it != _finish)
{
*(it - 1) = *it;
++it;
}
--_finish;
return pos;
}
private:
interator _start = nullptr;
interator _finish = nullptr;
interator _end_of_storage = nullptr;
};
//模版不能写在cpp里面:会出现链接错误
void test_vector1()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.push_back(4);
for (size_t i = 0; i < v1.size(); i++)
{
cout << v1[i] << ' ';
}
cout << endl;
for (auto d : v1)
{
cout << d << ' ';
}
cout << endl;
//int* it=v1.begin();
vector<int>::interator it = v1.begin();
while (it != v1.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void test_vector2()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.push_back(4);
int x;
cin >> x;
//没有x就不插入,有x的话就在前面插入
vector<int>::interator it = find(v1.begin(), v1.end(), x);
if (it != v1.end())
{
//insert 以后it这个实参会失效
it=v1.insert(it, 100);
//建议失效后的迭代器不要访问,除非赋值更新一下这个失效的迭代器
//cout << *it << endl;
}
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
v1.erase(v1.begin());
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
}
void test_vector3()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.push_back(4);
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
//删除偶数
vector<int>::interator it = v1.begin();
while (it != v1.end())
{
if (*it%2==0)
{
it = v1.erase(it);
}
else
{
++it;
}
}
for (auto e : v1)
{
cout << e<<' ';
}
cout << endl;
}
void test_vector4()
{
vector<int> v1;
v1.push_back(1);
v1.push_back(2);
v1.push_back(3);
v1.push_back(4);
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
vector<int> v2(v1);
for (auto e : v2)
{
cout << e << ' ';
}
cout << endl;
vector<int> v3;
v3.push_back(5);
v3.push_back(6);
v3.push_back(7);
v3.push_back(8);
v1 = v3;
for (auto e : v1)
{
cout << e << ' ';
}
cout << endl;
}
}
cpp
//vrctor.cpp
#include<iostream>
#include<algorithm>
using namespace std;
#include<assert.h>
#include<string>
#include"vector.h"
int main()
{
bit::test_vector4();
return 0;
}
衍生问题
使用memcpy拷贝问题
假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,以下代码会发生什么问题
cpp
int main()
{
bit::vector<bite::string> v;
v.push_back("1111");
v.push_back("2222");
v.push_back("3333");
return 0;
}
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
动态二维数组
cpp
void test2vector(size_t n)
{
// 使用vector定义二维数组vv,vv中的每个元素都是vector<int>
std::vector<std::vector<int>> vv(n);
// 将二维数组每一行中的vecotr<int>中的元素全部设置为1
for (size_t i = 0; i < n; ++i)
vv[i].resize(i + 1, 1);
// 给杨慧三角出第一列和对角线的所有元素赋值
for (int i = 2; i < n; ++i)
{
for (int j = 1; j < i; ++j)
{
vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];
}
}
}
std::vector<bit::vector> vv(n); 构造一个vv动态二维数组,vv中总共有n个元素,每个元素都是vector类型的,每行没有包含任何元素,如果n为3时如下所示