【几何】个人练习-Leetcode-1453. Maximum Number of Darts Inside of a Circular Dartboard

题目链接:https://leetcode.cn/problems/maximum-number-of-darts-inside-of-a-circular-dartboard/description/

题目大意:给出一系列点和一个圆的半径,(寻找一个圆心)求这个半径的圆最多能覆盖多少个点。

思路:几何上,如果一个圆能够覆盖N个点,那么在这N个点中,一定存在两个点,使得这个圆移动一下使得这两个点在圆上后,依然能够覆盖这原来N个点(详细的证明看网站上的题解,感觉还是比较intuitive的)。因此只需要遍历点对,寻找过这两个点,半径为r的圆的圆心,再计算这个圆覆盖的点数,求最大即可。注意两个点一个半径并无法确定圆心,因为这个圆心可能有两个,对称的,在纸上画画就能看出来。

然而代码写起来是有点繁杂,好多地方忘了用浮点数,debug了挺久。并且在判点是否在圆内圆外的函数中,我本地IDE上只需要>=0就行了,但这样子在leetcode网站上总有case过不了,跑出来答案不一样。于是修改了一下boundary,才通过。

完整代码

cpp 复制代码
class Solution {
public:
    inline int calD(vector<vector<int>>& darts, int r2, double cx, double cy) {
        int num = 0;
        for (auto d : darts) {
            double dis2 = (d[0] - cx) * (d[0] - cx) + (d[1] - cy) * (d[1] - cy);
            if (r2 - dis2 >= -1e-5)
                num++; 
        }
        return num;
    }


    int numPoints(vector<vector<int>>& darts, int r) {
        int n = darts.size();
        int ans = 1;
        int r2 = r*r;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                double midx = 1.0*(darts[i][0] + darts[j][0]) / 2;
                double midy = 1.0*(darts[i][1] + darts[j][1]) / 2;
                double half = sqrt((darts[i][0] - darts[j][0]) * (darts[i][0] - darts[j][0]) + (darts[i][1] - darts[j][1]) * (darts[i][1] - darts[j][1]))/2;
                double p = sqrt(r*r - half*half);

                if (darts[i][0] == darts[j][0]) {
                    ans = max(ans, calD(darts, r2, darts[i][0] + p, midy));
                    ans = max(ans, calD(darts, r2, darts[i][0] - p, midy));
                }
                else if (darts[i][1] == darts[j][1]) {
                    ans = max(ans, calD(darts, r2, midx, darts[i][1] + p));
                    ans = max(ans, calD(darts, r2, midx, darts[i][1] - p));
                }
                else {
                    double k = 1.0*(darts[i][1] - darts[j][1]) / (darts[i][0] - darts[j][0]);
                    k = -1.0 / k;
                    ans = max(ans, calD(darts, r2, midx + p * 1 / sqrt(1 + k*k), midy + p * k / sqrt(1 + k*k)));
                    ans = max(ans, calD(darts, r2, midx - p * 1 / sqrt(1 + k*k), midy - p * k / sqrt(1 + k*k)));
                }
            }
        }
        return ans;
    }
};
相关推荐
l1t4 分钟前
DeepSeek总结的算法 X 与舞蹈链文章
前端·javascript·算法
gihigo19986 分钟前
水声信号处理中DEMON谱分析的原理、实现与改进
算法·信号处理
歌_顿12 分钟前
微调方法学习总结(万字长文!)
算法
@小码农17 分钟前
202512 电子学会 Scratch图形化编程等级考试四级真题(附答案)
java·开发语言·算法
mit6.82432 分钟前
右端点对齐|镜像复用
算法
Xの哲學2 小时前
从硬中断到 softirq:Linux 软中断机制的全景解剖
linux·服务器·网络·算法·边缘计算
生信碱移2 小时前
单细胞空转CNV分析工具:比 inferCNV 快10倍?!兼容单细胞与空转的 CNV 分析与聚类,竟然还支持肿瘤的亚克隆树构建!
算法·机器学习·数据挖掘·数据分析·聚类
予枫的编程笔记3 小时前
深度拆解美团后端一面:从压测体系到 JVM 调优的闭环面试艺术
jvm·面试·职场和发展·java面试·美团面试
Brduino脑机接口技术答疑3 小时前
TDCA 算法在 SSVEP 场景中:Padding 的应用对象与工程实践指南
人工智能·python·算法·数据分析·脑机接口·eeg
程序员三藏3 小时前
白盒测试和黑盒测试详解
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例