题目链接:https://leetcode.cn/problems/maximum-number-of-darts-inside-of-a-circular-dartboard/description/
题目大意:给出一系列点和一个圆的半径,(寻找一个圆心)求这个半径的圆最多能覆盖多少个点。
思路:几何上,如果一个圆能够覆盖N个点,那么在这N个点中,一定存在两个点,使得这个圆移动一下使得这两个点在圆上后,依然能够覆盖这原来N个点(详细的证明看网站上的题解,感觉还是比较intuitive的)。因此只需要遍历点对,寻找过这两个点,半径为r
的圆的圆心,再计算这个圆覆盖的点数,求最大即可。注意两个点一个半径并无法确定圆心,因为这个圆心可能有两个,对称的,在纸上画画就能看出来。
然而代码写起来是有点繁杂,好多地方忘了用浮点数,debug了挺久。并且在判点是否在圆内圆外的函数中,我本地IDE上只需要>=0
就行了,但这样子在leetcode网站上总有case过不了,跑出来答案不一样。于是修改了一下boundary,才通过。
完整代码
cpp
class Solution {
public:
inline int calD(vector<vector<int>>& darts, int r2, double cx, double cy) {
int num = 0;
for (auto d : darts) {
double dis2 = (d[0] - cx) * (d[0] - cx) + (d[1] - cy) * (d[1] - cy);
if (r2 - dis2 >= -1e-5)
num++;
}
return num;
}
int numPoints(vector<vector<int>>& darts, int r) {
int n = darts.size();
int ans = 1;
int r2 = r*r;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
double midx = 1.0*(darts[i][0] + darts[j][0]) / 2;
double midy = 1.0*(darts[i][1] + darts[j][1]) / 2;
double half = sqrt((darts[i][0] - darts[j][0]) * (darts[i][0] - darts[j][0]) + (darts[i][1] - darts[j][1]) * (darts[i][1] - darts[j][1]))/2;
double p = sqrt(r*r - half*half);
if (darts[i][0] == darts[j][0]) {
ans = max(ans, calD(darts, r2, darts[i][0] + p, midy));
ans = max(ans, calD(darts, r2, darts[i][0] - p, midy));
}
else if (darts[i][1] == darts[j][1]) {
ans = max(ans, calD(darts, r2, midx, darts[i][1] + p));
ans = max(ans, calD(darts, r2, midx, darts[i][1] - p));
}
else {
double k = 1.0*(darts[i][1] - darts[j][1]) / (darts[i][0] - darts[j][0]);
k = -1.0 / k;
ans = max(ans, calD(darts, r2, midx + p * 1 / sqrt(1 + k*k), midy + p * k / sqrt(1 + k*k)));
ans = max(ans, calD(darts, r2, midx - p * 1 / sqrt(1 + k*k), midy - p * k / sqrt(1 + k*k)));
}
}
}
return ans;
}
};