【几何】个人练习-Leetcode-1453. Maximum Number of Darts Inside of a Circular Dartboard

题目链接:https://leetcode.cn/problems/maximum-number-of-darts-inside-of-a-circular-dartboard/description/

题目大意:给出一系列点和一个圆的半径,(寻找一个圆心)求这个半径的圆最多能覆盖多少个点。

思路:几何上,如果一个圆能够覆盖N个点,那么在这N个点中,一定存在两个点,使得这个圆移动一下使得这两个点在圆上后,依然能够覆盖这原来N个点(详细的证明看网站上的题解,感觉还是比较intuitive的)。因此只需要遍历点对,寻找过这两个点,半径为r的圆的圆心,再计算这个圆覆盖的点数,求最大即可。注意两个点一个半径并无法确定圆心,因为这个圆心可能有两个,对称的,在纸上画画就能看出来。

然而代码写起来是有点繁杂,好多地方忘了用浮点数,debug了挺久。并且在判点是否在圆内圆外的函数中,我本地IDE上只需要>=0就行了,但这样子在leetcode网站上总有case过不了,跑出来答案不一样。于是修改了一下boundary,才通过。

完整代码

cpp 复制代码
class Solution {
public:
    inline int calD(vector<vector<int>>& darts, int r2, double cx, double cy) {
        int num = 0;
        for (auto d : darts) {
            double dis2 = (d[0] - cx) * (d[0] - cx) + (d[1] - cy) * (d[1] - cy);
            if (r2 - dis2 >= -1e-5)
                num++; 
        }
        return num;
    }


    int numPoints(vector<vector<int>>& darts, int r) {
        int n = darts.size();
        int ans = 1;
        int r2 = r*r;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                double midx = 1.0*(darts[i][0] + darts[j][0]) / 2;
                double midy = 1.0*(darts[i][1] + darts[j][1]) / 2;
                double half = sqrt((darts[i][0] - darts[j][0]) * (darts[i][0] - darts[j][0]) + (darts[i][1] - darts[j][1]) * (darts[i][1] - darts[j][1]))/2;
                double p = sqrt(r*r - half*half);

                if (darts[i][0] == darts[j][0]) {
                    ans = max(ans, calD(darts, r2, darts[i][0] + p, midy));
                    ans = max(ans, calD(darts, r2, darts[i][0] - p, midy));
                }
                else if (darts[i][1] == darts[j][1]) {
                    ans = max(ans, calD(darts, r2, midx, darts[i][1] + p));
                    ans = max(ans, calD(darts, r2, midx, darts[i][1] - p));
                }
                else {
                    double k = 1.0*(darts[i][1] - darts[j][1]) / (darts[i][0] - darts[j][0]);
                    k = -1.0 / k;
                    ans = max(ans, calD(darts, r2, midx + p * 1 / sqrt(1 + k*k), midy + p * k / sqrt(1 + k*k)));
                    ans = max(ans, calD(darts, r2, midx - p * 1 / sqrt(1 + k*k), midy - p * k / sqrt(1 + k*k)));
                }
            }
        }
        return ans;
    }
};
相关推荐
CoovallyAIHub4 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP5 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo5 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo5 小时前
300:最长递增子序列
算法
CoovallyAIHub10 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub11 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js