3d gaussian splatting公式推导

1. 离散公式推导

nerf中连续的积分渲染公式是:

其中被遮挡率:

那么转换为离散公式后有:

其中,代表j时刻的时间差,将其带入渲染公式:

设透明度

则被遮挡率

而gaussian-splating的公式与nerf不一样的点在于,透明度的计算是根据像素点处于2D高斯球的概率求得的:

其中是3D高斯球溅射到屏幕上形成的2D高斯球的均值,是2D高斯球的协方差

2. 正向渲染公式推导

正向渲染是指从3D高斯球渲染到2D屏幕中某个像素值的颜色的过程。

2.1 3D高斯到2D高斯

首先,3D高斯参数有高斯球的中心即均值,协方差,透明度,颜色,2D高斯参数有高斯球的中心即均值,协方差

对于均值来说,其值就是将转换到屏幕坐标系上就可以了

从世界坐标系转换到相机坐标系下,

这里3D高斯球的表示是通过一个旋转R和一个缩放矩阵S的乘积表示的,即,这么表示的原理是协方差是一个椭球,标准正态分布是一个圆,椭球就是将这个圆进行旋转缩放变成的。是标准正态分布的协方差,它是一个单位矩阵,所以可以省略。

3. 反向传播公式推导

参考:

【CV】Nerf中体素渲染的离散公式推导 - Edlinf - 博客园

https://zhuanlan.zhihu.com/p/633106694

相关推荐
KingRumn2 小时前
Linux信号之标准信号与实时信号
linux·算法
源代码•宸5 小时前
Leetcode—620. 有趣的电影&&Q3. 有趣的电影【简单】
数据库·后端·mysql·算法·leetcode·职场和发展
2301_800256116 小时前
地理空间数据库中的CPU 和 I/O 开销
数据库·算法·oracle
一个不知名程序员www6 小时前
算法学习入门---结构体和类(C++)
c++·算法
Godspeed Zhao7 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
XFF不秃头9 小时前
力扣刷题笔记-旋转图像
c++·笔记·算法·leetcode
Coding茶水间9 小时前
基于深度学习的学生上课行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
王老师青少年编程9 小时前
csp信奥赛C++标准模板库STL案例应用3
c++·算法·stl·csp·信奥赛·lower_bound·标准模版库
有为少年10 小时前
Welford 算法 | 优雅地计算海量数据的均值与方差
人工智能·深度学习·神经网络·学习·算法·机器学习·均值算法