3d gaussian splatting公式推导

1. 离散公式推导

nerf中连续的积分渲染公式是:

其中被遮挡率:

那么转换为离散公式后有:

其中,代表j时刻的时间差,将其带入渲染公式:

设透明度

则被遮挡率

而gaussian-splating的公式与nerf不一样的点在于,透明度的计算是根据像素点处于2D高斯球的概率求得的:

其中是3D高斯球溅射到屏幕上形成的2D高斯球的均值,是2D高斯球的协方差

2. 正向渲染公式推导

正向渲染是指从3D高斯球渲染到2D屏幕中某个像素值的颜色的过程。

2.1 3D高斯到2D高斯

首先,3D高斯参数有高斯球的中心即均值,协方差,透明度,颜色,2D高斯参数有高斯球的中心即均值,协方差

对于均值来说,其值就是将转换到屏幕坐标系上就可以了

从世界坐标系转换到相机坐标系下,

这里3D高斯球的表示是通过一个旋转R和一个缩放矩阵S的乘积表示的,即,这么表示的原理是协方差是一个椭球,标准正态分布是一个圆,椭球就是将这个圆进行旋转缩放变成的。是标准正态分布的协方差,它是一个单位矩阵,所以可以省略。

3. 反向传播公式推导

参考:

【CV】Nerf中体素渲染的离散公式推导 - Edlinf - 博客园

https://zhuanlan.zhihu.com/p/633106694

相关推荐
艾莉丝努力练剑23 分钟前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
_殊途2 小时前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
千宇宙航4 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十四课——图像二值化的FPGA实现
图像处理·计算机视觉·fpga开发
橡晟4 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
PyAIExplorer5 小时前
图像亮度调整的简单实现
人工智能·计算机视觉
珊瑚里的鱼5 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
秋说6 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法
AI technophile6 小时前
OpenCV计算机视觉实战(15)——霍夫变换详解
人工智能·opencv·计算机视觉
lifallen7 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove7 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶