每日学习一个数据结构-哈希表(散列表)

文章目录

哈希表(Hash table),也被称为散列表,是一种基于哈希函数的数据结构,它通过把关键码值(Key value)映射到表中一个位置来访问记录,从而加快查找的速度。以下是对哈希表的详细介绍:

示意图

一、基本概念

  • 哈希函数:将关键码值转换为表中位置的函数,也称为散列函数。
  • 散列表:存放记录的数组,也称为哈希表。
  • 冲突:不同的关键码值可能映射到同一个位置,即k1 ≠ k2,但f(k1) = f(k2),这种现象称为冲突。

二、工作原理

哈希表通过哈希函数将关键码值映射为表中的索引,从而直接访问记录。这个过程具有非常高的效率,因为插入、删除和查找的时间复杂度通常接近于O(1)。但是,哈希表也面临着哈希冲突的问题,需要设计合适的冲突解决策略来解决。

三、常用哈希函数

哈希函数有多种,常见的包括CRC32、MD5、SHA等。选择哈希函数时,需要考虑计算哈希函数所需时间、关键字的长度、哈希表的大小以及关键字的分布情况。

四、冲突解决方法

  1. 开放寻址法:当发生冲突时,通过一定的增量序列在表中寻找下一个空位置。增量序列可以是线性的、二次的或伪随机的。
  2. 再散列法:当发生冲突时,使用另一个哈希函数重新计算哈希值,直到找到一个空位置。
  3. 链地址法(拉链法):每个哈希表位置对应一个链表,所有映射到该位置的记录都存储在链表中。

五、优缺点

优点

  • 对于大数据集,哈希表能够提供快速的查找、插入和删除操作。
  • 代码实现相对简单,只需要定义好哈希函数即可。

缺点

  • 哈希表中的数据是无序的,如果需要保持数据的顺序,则不适合使用哈希表。
  • 哈希冲突会影响哈希表的性能,需要设计合适的冲突解决策略。

六、应用场景

哈希表由于其高效性和易用性,被广泛应用于各种场景,包括:

  • 搜索引擎:存储网页数据并通过索引快速检索。
  • 缓存系统:作为存储引擎,通过哈希函数将数据分配到相应的哈希表中,提高数据访问速度。
  • 实时数据分析:存储用户行为、应用程序事件等数据,方便进行数据分析和报告。
  • 数据库索引:提供快速的数据存储和检索功能。
  • 分布式存储系统:使用哈希函数将数据映射到相应的节点中,提高系统性能。
  • 加密技术:基于哈希表的加密算法可以提高数据的安全性。

综上所述,哈希表是一种高效的数据结构,通过哈希函数实现快速的数据访问。然而,它也面临着哈希冲突等挑战,需要设计合适的冲突解决策略来优化性能。

相关推荐
不羁的木木3 分钟前
【开源鸿蒙跨平台开发学习笔记】Day03:React Native 开发 HarmonyOS-GitCode口袋工具开发-1
笔记·学习·harmonyos
靠沿2 小时前
Java数据结构初阶——LinkedList
java·开发语言·数据结构
Elias不吃糖3 小时前
LeetCode每日一练(209, 167)
数据结构·c++·算法·leetcode
铁手飞鹰3 小时前
单链表(C语言,手撕)
数据结构·c++·算法·c·单链表
hweiyu003 小时前
数据结构:循环链表
数据结构·链表
im_AMBER3 小时前
AI井字棋项目开发笔记
前端·笔记·学习·算法
zxguan4 小时前
Springboot 学习 之 下载接口 HttpMessageNotWritableException
spring boot·后端·学习
野蛮人6号4 小时前
力扣热题100道前62道,内容和力扣官方稍有不同,记录了本人的一些独特的解法
数据结构·算法·leetcode
学困昇4 小时前
C++11中的lambda表达式详解
开发语言·数据结构·c++
IT阳晨。5 小时前
【神经网络与深度学习(吴恩达)】神经网络基础学习笔记
深度学习·神经网络·学习