语音音频(wav)声纹识别-技术实现-python

通过pyannote.audio 实现语音音频声纹识别。

安装:

python 复制代码
pip install pyannote.audio

示例音频下载地址:【免费】语音音频(WAV)声纹识别示例资源-CSDN文库

实现代码:

python 复制代码
from pyannote.audio import Model
from pyannote.audio import Inference
from scipy.spatial.distance import cdist
# 初始化模型
model = Model.from_pretrained("pyannote/wespeaker-voxceleb-resnet34-LM",cache_dir = "./ckpt/",local_files_only = False)

inference = Inference(model, window="whole")
# 获取音频的特征
embedding_1 = inference(r"audio_data\0\014.wav").reshape(1,-1) # id 为 0 的人的音频
embedding_2 = inference(r"audio_data\0\021.wav").reshape(1,-1) # id 为 0 的人的音频
embedding_3 = inference(r"audio_data\1\004.wav").reshape(1,-1) # id 为 1 的人的音频

print("embedding_1:",embedding_1.shape)

# 通过余弦相似度,比较音频特征向量间的距离,获取相似度,距离越小,特征越相近,可能为同一人说话的可能性越高。
distance_sim = cdist(embedding_1 , embedding_2 , metric="cosine")[0,0]
distance_not = cdist(embedding_1 , embedding_3 , metric="cosine")[0,0]

# 余弦距离越小越接近
print("相同人 Distance emb1 between emb2: " + str(distance_sim))
print("不同人 Distance emb1 between emb3: " + str(distance_not))

程序运行输出信息如下:

python 复制代码
相同人 Distance emb1 between emb2: 0.447950675466506
不同人 Distance emb1 between emb3: 0.7426738655303657
相关推荐
退休钓鱼选手17 分钟前
[ Pytorch教程 ] 神经网络的基本骨架 torch.nn -Neural Network
pytorch·深度学习·神经网络
冰糖猕猴桃28 分钟前
【AI】把“大杂烩抽取”拆成多步推理:一个从单提示到多阶段管线的实践案例
大数据·人工智能·ai·提示词·多步推理
PPIO派欧云28 分钟前
PPIO上线GLM-OCR:0.9B参数SOTA性能,支持一键部署
人工智能·ai·大模型·ocr·智谱
雨大王51240 分钟前
怎么打造一个能自我进化的制造数字基座?
人工智能·汽车·制造
fengfuyao9851 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
Java面试题总结1 小时前
基于 Java 的 PDF 文本水印实现方案(iText7 示例)
java·python·pdf
不懒不懒1 小时前
【决策树算法实战指南:从原理到Python实现】
python·决策树·id3·c4.5·catr
爱吃泡芙的小白白1 小时前
深入解析CNN中的Dropout层:从基础原理到最新变体实战
人工智能·神经网络·cnn·dropout·防止过拟合
马猴烧酒.1 小时前
【面试八股|Java集合】Java集合常考面试题详解
java·开发语言·python·面试·八股
Eloudy1 小时前
全文 -- TileLang: A Composable Tiled Programming Model for AISystems
人工智能·量子计算·arch