hive窗口函数实现组内求和、累加、排序、计数

问题描述:

group by实现的分组聚合函数与元数据表对比难以实现后续进一步的数据加工处理

窗口函数更容易实现在元数据表上打分组聚合的补丁

窗口函数的一般公式:

sql 复制代码
<窗口函数> over (partition by <用于分组的列名> order by <用于排序的列名> [rows between ?? and ???])

函数的位置可以放如下函数:

1.rank() ->如果有并列名次的行,会占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,4

2.dense_rank() ->如果有并列名次的行,不占用下一名次的位置。比如正常排名是1,2,3,4,但是现在前3名是并列的名次,结果是:1,1,1,2。

3.row_number() ->不考虑并列名次的情况。比如前3名是并列的名次,排名是正常的1,2,3,4。

4.lag(col,n,default_val):获取往前第n行数据,col是列名,n是往上的行数,当第n行为null的时候取default_val

5.LEAD(col,n, default_val):往后第n行数据,col是列名,n是往下的行数,当第n行为null的时候取default_val

6.聚合函数(sum求和,平均、计数、最大最小值)作为窗口函数,可以在每一行的数据里直观的看到,截止到本行数据,统计数据是多少(最大值、最小值等)。同时可以看出每一行数据,对整体统计数据的影响。

自行体会,真嘟很好用

对比python也不算差,之后会上实际案例

相关推荐
万能小锦鲤13 小时前
《大数据技术原理与应用》实验报告三 熟悉HBase常用操作
java·hadoop·eclipse·hbase·shell·vmware·实验报告
天翼云开发者社区19 小时前
数据治理的长效机制
大数据·数据仓库
王小王-1231 天前
基于Hadoop与LightFM的美妆推荐系统设计与实现
大数据·hive·hadoop·大数据美妆推荐系统·美妆商品用户行为·美妆电商
一切顺势而行1 天前
hadoop 集群问题处理
大数据·hadoop·分布式
万能小锦鲤2 天前
《大数据技术原理与应用》实验报告七 熟悉 Spark 初级编程实践
hive·hadoop·ubuntu·flink·spark·vmware·实验报告
项目題供诗2 天前
Hadoop(二)
大数据·hadoop·分布式
Leo.yuan2 天前
ETL还是ELT,大数据处理怎么选更靠谱?
大数据·数据库·数据仓库·信息可视化·etl
万能小锦鲤2 天前
《大数据技术原理与应用》实验报告五 熟悉 Hive 的基本操作
hive·hadoop·ubuntu·eclipse·vmware·实验报告·hiveql
張萠飛2 天前
flink sql如何对hive string类型的时间戳进行排序
hive·sql·flink
張萠飛2 天前
flink sql读hive catalog数据,将string类型的时间戳数据排序后写入kafka,如何保障写入kafka的数据是有序的
hive·sql·flink