开放词汇目标检测

开放词汇目标检测(Open Vocabulary Object Detection, OVOD)是一种计算机视觉技术,它扩展了传统目标检测的概念,能够识别和定位图像中的对象,即使这些对象的类别没有在训练数据集中明确列出。这种技术通过结合大规模预训练的图像-文本对模型,使得目标检测能够覆盖更广泛的词汇和对象类别,实现对新颖或罕见对象的有效识别。

  1. 预训练的图像-文本对模型:使用大规模的图像和配对文本数据进行预训练,如使用视觉-语言预训练(VLP)模型。这些模型通过学习图像内容与自然语言描述之间的关系,能够理解和表示广泛的对象和属性。

  2. 细粒度属性突出显示:传统的目标检测模型通常关注于识别对象的大类别(如狗、车等)。开放词汇目标检测模型通过显式突出显示细粒度属性(如颜色、形状、动作等),增强了模型对具有特定属性对象的识别能力。这通常通过修改模型的文本编码器部分,使其能够识别和强调输入文本中的细粒度属性词汇。

  3. 特征重组和调整:将全局文本特征与属性特定特征结合,通过设计或学习得到的算法对这些特征进行调整和优化,以提高对细粒度属性的检测精度。

开放词汇目标检测不仅提升了目标检测技术的覆盖范围和精确度,也为未来的智能系统提供了更强的视觉理解能力。

  • 泛化能力:开放词汇目标检测能够扩展模型的泛化能力,使其能在没有直接训练数据的情况下识别新的对象类别。
  • 细粒度识别:通过关注对象的细粒度属性,可以更精确地理解和描述场景中的各种元素,这对于自动驾驶、增强现实、内容创建等领域具有重要意义。
  • 适应新环境:这种技术可以帮助模型适应动态变化的环境和持续扩展的对象类别,对于持续学习和适应性系统尤为重要。

论文作者:Yuqi Ma,Mengyin Liu,Chao Zhu,Xu-Cheng Yin

作者单位:University of Science and Technology Beijing

论文链接:http://arxiv.org/abs/2409.16136v1

内容简介:

1)方向:开放词汇目标检测

2)应用:目标检测

3)背景:传统的OVD模型注重对象的粗粒度类别而非细粒度属性,导致无法识别具有特定属性的对象。然而,这些OVD模型是在大规模图像-文本对上进行预训练的,具有丰富的属性词汇,其潜在特征空间可以表示全局文本特征,但未突出显示细粒度属性。

4)方法:本文提出一种通用和显式的方法,通过在显式线性空间中突出显示细粒度属性,增强了冻结主流OVD模型的属性级别检测能力。利用LLM突出显示输入文本中的属性词汇,通过调整令牌掩码,提取OVD模型的文本编码器中的全局文本和属性特定特征,将它们显式组合为新的属性突出显示特征,其中相应的标量被手工设计或学习以重新调整这两个向量。

5)结果:在FG-OVD数据集上的实证评估表明,所提出的方法统一提高了各种主流模型的细粒度属性级别OVD,并取得了新的最先进性能。

相关推荐
骚戴11 小时前
深入解析:Gemini 3.0 Pro 的 SSE 流式响应与跨区域延迟优化实践
java·人工智能·python·大模型·llm
CNRio11 小时前
从智能穿戴设备崛起看中国科技自立自强的创新实践
人工智能·科技·物联网
疾风sxp11 小时前
nl2sql技术实现自动sql生成之Spring AI Alibaba Nl2sql
java·人工智能
程序猿追11 小时前
使用GeeLark+亮数据,做数据采集打造爆款内容
运维·服务器·人工智能·机器学习·架构
木卫二号Coding11 小时前
第六十篇-ComfyUI+V100-32G+运行Wan2.2-图生视频
人工智能
GAOJ_K11 小时前
滚珠螺杆的内循环与外循环有何差异?
人工智能·科技·机器人·自动化·制造
这张生成的图像能检测吗11 小时前
(论文速读)Nickel and Diming Your GAN:通过知识蒸馏提高GAN效率的双重方法
人工智能·生成对抗网络·计算机视觉·知识蒸馏·图像生成·模型压缩技术
中国胖子风清扬12 小时前
Spring AI Alibaba + Ollama 实战:基于本地 Qwen3 的 Spring Boot 大模型应用
java·人工智能·spring boot·后端·spring·spring cloud·ai
A7bert77712 小时前
【YOLOv5seg部署RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·深度学习·yolo·目标检测
不会计算机的g_c__b12 小时前
AI Agent:从概念到实践,解析智能体的未来趋势与挑战
人工智能