Hive企业级调优[4]——HQL语法优化之分组聚合优化

HQL语法优化之分组聚合优化

优化说明

在 Hive 中,未经优化的分组聚合通常通过一个 MapReduce Job 实现。Map 端负责读取数据,并按分组字段进行分区,通过 Shuffle 将数据发送至 Reduce 端,在 Reduce 端完成最终的聚合运算。

Hive 对分组聚合的优化主要是为了减少 Shuffle 数据量,具体做法是采用 map-side 聚合。所谓 map-side 聚合,就是在 Map 端维护一个哈希表,利用它来完成部分聚合,然后将部分聚合的结果按照分组字段分区,发送至 Reduce 端以完成最终的聚合。这种方法能够有效地减少 Shuffle 的数据量,从而提高分组聚合运算的效率。

与 map-side 聚合相关的参数包括:

  • 启用 map-side 聚合

    sql 复制代码
    set hive.map.aggr=true;
  • 检测源表数据是否适合进行 map-side 聚合

    • 检测方法是:先对若干条数据进行 map-side 聚合,若聚合后的条数和聚合前的条数比值小于设定值,则认为该表适合进行 map-side 聚合;
    • 否则,认为该表数据不适合进行 map-side 聚合,后续数据便不再进行 map-side 聚合。
    sql 复制代码
    set hive.map.aggr.hash.min.reduction=0.5;
  • 用于检测源表是否适合 map-side 聚合的条数

    sql 复制代码
    set hive.groupby.mapaggr.checkinterval=100000;
  • map-side 聚合所用的哈希表占用 map task 堆内存的最大比例

    • 若超出此值,则会对哈希表进行一次 flush。
    sql 复制代码
    set hive.map.aggr.hash.force.flush.memory.threshold=0.9;
优化案例

1)示例 SQL:

sql 复制代码
hive (default)> 
select
    product_id,
    count(*)
from order_detail
group by product_id;

2)优化前 未经优化的分组聚合,执行计划如下图所示:(实际图形无法在此文本中展示,请参考执行计划输出结果)

3)优化思路 可以考虑开启 map-side 聚合,配置以下参数:

sql 复制代码
-- 启用 map-side 聚合,默认是 true
set hive.map.aggr=true;

-- 用于检测源表数据是否适合进行 map-side 聚合。检测的方法是:先对若干条数据进行 map-side 聚合,若聚合后的条数和聚合前的条数比值小于该值,则认为该表适合进行 map-side 聚合;否则,认为该表数据不适合进行 map-side 聚合,后续数据便不再进行 map-side 聚合。
set hive.map.aggr.hash.min.reduction=0.5;

-- 用于检测源表是否适合 map-side 聚合的条数。
set hive.groupby.mapaggr.checkinterval=100000;

-- map-side 聚合所用的哈希表,占用 map task 堆内存的最大比例,若超出该值,则会对哈希表进行一次 flush。
set hive.map.aggr.hash.force.flush.memory.threshold=0.9;

优化后的执行计划如图所示:(同样,实际图形需通过执行 EXPLAIN 命令获得)

相关推荐
virtual_k1smet4 小时前
梧桐·鸿鹄- 大数据assistant-level
大数据·笔记
ggabb5 小时前
海南封关:锚定中国制造2025,破解产业转移生死局
大数据·人工智能
aigcapi8 小时前
[深度观察] RAG 架构重塑流量分发:2025 年 GEO 优化技术路径与头部服务商选型指南
大数据·人工智能·架构
山峰哥8 小时前
SQL调优核心战法——索引失效场景与Explain深度解析
大数据·汇编·数据库·sql·编辑器·深度优先
hqyjzsb10 小时前
从爱好到专业:AI初学者如何跨越CAIE认证的理想与现实鸿沟
大数据·c语言·人工智能·信息可视化·职场和发展·excel·业界资讯
袋鼠云数栈10 小时前
企业数据资产管理核心框架:L1-L5分层架构解析
大数据·人工智能·架构
zxsz_com_cn11 小时前
设备预测性维护怎么做?预测性维护案例详解
大数据·人工智能
G皮T11 小时前
【Elasticsearch】查询性能调优(四):计数的精确性探讨
大数据·elasticsearch·搜索引擎·全文检索·es·性能·opensearch
十月南城11 小时前
ES性能与可用性——分片、副本、路由与聚合的调度逻辑与成本
大数据·elasticsearch·搜索引擎
阿坤带你走近大数据12 小时前
大数据行业中,什么是拉链表?具体怎么做?
大数据