TOF系列—深度图滤波

本篇文章主要介绍TOF深度图的后处理,鉴于自身水平所限,如有错误,欢迎批评指正。(欢迎进Q群交流:874653199)

TOF由于其本身的特性,导致其所获得的深度图存在以下问题:

1.对空的地方存在许多离散噪点;

2.边缘处存在许多飞点;

3.点云不够平滑。

对深度图进行滤波处理,可以有效的去除噪点,并获得更为平滑的点云数据。深度图的滤波可以分为以下三个部分:

1.深度图去噪;

2.深度图平滑;

3.深度图补全。

深度图去噪是指去除对空的噪点,物体边缘产生的飞点,以及指定范围外的点。深度图平滑是指对深度图像进行平滑,深度图平滑在点云上的表现是点云更平整,厚度更薄。深度图补全则是针对去噪及平滑后的深度图进行补充,输出更多的有效信息(本博文不涉及)。

深度图平滑函数如下图所示:

图1 深度图平滑函数

中值滤波:将指定方框内的数据进行排序,并选取中间的数据替代当前的像素值;

均值滤波:将指定方框内的数据进行求和,并取均值,选取均值替代当前的像素值;

双边滤波:一种非线性滤波器,可保持边缘,并进行降噪平滑。采用加权平均,具有两个权重;

深度图去噪函数如下图所示:

图2 深度图去噪函数

IR过曝滤除:将IR值大于指定阈值像素的深度值置为零,由于像素点过曝会影响周围像素,所以同时将过曝点周围的像素深度值置零,经验长度为2;

IR欠曝滤除:将IR值小于指定阈值像素的深度值置为零,该像素点置信度降低,计算出的深度值不可靠;

Sobel边缘去噪:边缘通常是物体交界处,会产生一定的噪点,利用sobel进行边缘检测,并将边缘点去除;

连通域面积去噪:检测深度图中的连通域,并计算其面积,将面积小于阈值的连通域中的像素的对应深度值置零;

法向量去噪:根据深度图计算法向量,并根据阈值将像素值对应的深度值置零;

分类梯度去噪:根据阈值1将深度图分为前景和背景;将前景中梯度大于阈值2的像素点对应的深度值置零;将背景中梯度大于阈值2的像素点对应的深度值置零。

使用TOF模组正对白墙,采集数据,并进行相应的滤波。

深度图平滑函数:

均值滤波:

​​​​​​ ​​​​​​​

a.原始点云 b.均值滤波核=3

​​​​​​​ ​​​​​​​

c. 均值滤波核 d.均值滤波核=7

3 均值滤波

中值滤波:

​​​​​​​ ​​​​​​​

a.原始点云 b.中值滤波核=3

​​​​​​​ ​​​​​​​ ​​​​​​​

c. 中值滤波核=5 d. 中值滤波核=7

4 中值滤波

双边滤波:

​​​​​​​ ​​​​​​​ ​​​​​​​

a.原始点云 b.双边滤波------参数40、 80

​​​​​​​ ​​​​​​​ ​​​​​​​

c.双边滤波------参数50、100 d.双边滤波------参数 60 120

5 双边滤波

使用TOF采集如下场景的深度图,如下图所示:

​​​​​​​ ​​​​​​​ ​​​​​​​

图6 测量场景

深度图去噪函数:

过曝滤除:

​​​​​​​ ​​​​​​​

a.原始点云 b.IR=thresh1

​​​​​​​ ​​​​​​​

c.IR=thresh2

7 过曝滤除

欠曝滤除:

​​​​​​​ ​​​​​​​

a.原始点云 b.IR=thresh1

​​​​​​​ ​​​​​​​

c.IR=thresh2

8 欠曝滤除

sobel 边缘去噪:

​​​​​​​ ​​​​​​​

a.原始点云 b.sobel边缘去噪

9 sobel 边缘去噪

连通域面积去噪:

​​​​​​​ ​​​​​​​

a.原始点云 b.area=10

​​​​​​​ ​​​​​​​

c.area=30

10 连通域去噪

法向量去噪:

​​​​​​​ ​​​​​​​

a.原始点云 b.Normal

11 法向量去噪

分段梯度去噪:

​​​​​​​ ​​​​​​​

a.原始点云 ​​​​​​​ b.梯度1

​​​​​​​ ​​​​​​​

c.梯度2 ​​​​​​​ ​​​​​​​ d.梯度3

12 分段梯度去噪

组合去噪:

组合去噪可以有效的弥补各种方法的缺点,对于复杂场景,组合去噪删除了绝大部分的噪点,同时又尽可能多的保留了有效点数据。

相关推荐
Niuguangshuo5 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火5 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887825 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a5 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily6 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15886 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01176 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I6 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白6 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷7 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能