CVPR论文《DETRs Beat YOLOs on Real-time Object Detection》读后思维导图

下面欣赏一下论文中的图和表:

1、与YOLOs的性能对比图

2、不同置信度阈值下的框数

3、IoU阈值和置信度阈值对准确性和NMS执行时间的影响

4、混合编码器不同变体

5、模型概述。将骨干网后三个阶段的特征输入到编码器中。高效混合编码器通过基于注意力的尺度内特征交互(AIFI)和基于cnn的跨尺度特征融合(CCFF)将多尺度特征转化为图像特征序列。然后,最小不确定性查询选择选择固定数量的编码器特征作为解码器的初始对象查询。

最后,具有辅助预测头的解码器迭代优化对象查询以生成类别和框

6、CCFF中的融合Fusion模块结构图

7、最小不确定性查询和普通查询对比。所选编码器特征的分类和IoU分数。紫色点和绿色点分别表示用最小不确定性查询选择和普通查询选择训练的模型中选择的特征。

8、与SOTA的比较

9、不同变体(A、B、C、D、E)的性能对比,即混合编码器的消融实验

10、查询选择的消融实验

11、解码器层数的消融实验

以上图和表若有疑问欢迎评论留言,竭力解答~~~

(不过这次读得好慢好慢啊啊啊啊啊!!有啥快速读论文的好方法吗???求助呜呜呜~)

相关推荐
uesowys28 分钟前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术37 分钟前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin44 分钟前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_1 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan1 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp
Yeats_Liao1 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
深圳市恒星物联科技有限公司1 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星1 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃1 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao1 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm