CVPR论文《DETRs Beat YOLOs on Real-time Object Detection》读后思维导图

下面欣赏一下论文中的图和表:

1、与YOLOs的性能对比图

2、不同置信度阈值下的框数

3、IoU阈值和置信度阈值对准确性和NMS执行时间的影响

4、混合编码器不同变体

5、模型概述。将骨干网后三个阶段的特征输入到编码器中。高效混合编码器通过基于注意力的尺度内特征交互(AIFI)和基于cnn的跨尺度特征融合(CCFF)将多尺度特征转化为图像特征序列。然后,最小不确定性查询选择选择固定数量的编码器特征作为解码器的初始对象查询。

最后,具有辅助预测头的解码器迭代优化对象查询以生成类别和框

6、CCFF中的融合Fusion模块结构图

7、最小不确定性查询和普通查询对比。所选编码器特征的分类和IoU分数。紫色点和绿色点分别表示用最小不确定性查询选择和普通查询选择训练的模型中选择的特征。

8、与SOTA的比较

9、不同变体(A、B、C、D、E)的性能对比,即混合编码器的消融实验

10、查询选择的消融实验

11、解码器层数的消融实验

以上图和表若有疑问欢迎评论留言,竭力解答~~~

(不过这次读得好慢好慢啊啊啊啊啊!!有啥快速读论文的好方法吗???求助呜呜呜~)

相关推荐
是瑶瑶子啦几秒前
【深度学习】多头注意力机制的实现|pytorch
人工智能·pytorch·深度学习
小和尚同志5 分钟前
热门 AI 编辑器(Cursor、v0、Manus、Windsurf 等)及工具的系统提示词
人工智能·aigc
量子位13 分钟前
不用等R2了!第三方给新版DeepSeek V3添加深度思考,推理101秒破解7米甘蔗过2米门
人工智能·deepseek
用户2745339106823 分钟前
MCP 生命周期
人工智能
何仙鸟29 分钟前
卷积神经网络实战(1)
人工智能·神经网络·cnn
电鱼智能的电小鱼36 分钟前
EFISH-SBC-RK3588 —— 厘米级定位 × 旗舰算力 × 工业级可靠‌
linux·人工智能·嵌入式硬件·边缘计算
FIT2CLOUD飞致云1 小时前
干货分享|MaxKB智能问数方案及步骤详解
人工智能·开源
lilye661 小时前
精益数据分析(19/126):走出数据误区,拥抱创业愿景
前端·人工智能·数据分析
信息快讯1 小时前
【机器学习驱动的智能化电池管理技术与应用】
人工智能·机器学习