CVPR论文《DETRs Beat YOLOs on Real-time Object Detection》读后思维导图

下面欣赏一下论文中的图和表:

1、与YOLOs的性能对比图

2、不同置信度阈值下的框数

3、IoU阈值和置信度阈值对准确性和NMS执行时间的影响

4、混合编码器不同变体

5、模型概述。将骨干网后三个阶段的特征输入到编码器中。高效混合编码器通过基于注意力的尺度内特征交互(AIFI)和基于cnn的跨尺度特征融合(CCFF)将多尺度特征转化为图像特征序列。然后,最小不确定性查询选择选择固定数量的编码器特征作为解码器的初始对象查询。

最后,具有辅助预测头的解码器迭代优化对象查询以生成类别和框

6、CCFF中的融合Fusion模块结构图

7、最小不确定性查询和普通查询对比。所选编码器特征的分类和IoU分数。紫色点和绿色点分别表示用最小不确定性查询选择和普通查询选择训练的模型中选择的特征。

8、与SOTA的比较

9、不同变体(A、B、C、D、E)的性能对比,即混合编码器的消融实验

10、查询选择的消融实验

11、解码器层数的消融实验

以上图和表若有疑问欢迎评论留言,竭力解答~~~

(不过这次读得好慢好慢啊啊啊啊啊!!有啥快速读论文的好方法吗???求助呜呜呜~)

相关推荐
985小水博一枚呀几秒前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan1 分钟前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀5 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路15 分钟前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子20 分钟前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
咔叽布吉30 分钟前
【论文阅读笔记】CamoFormer: Masked Separable Attention for Camouflaged Object Detection
论文阅读·笔记·目标检测
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别