GPT理论

1.GPT发展

  • Transformer是一个用作翻译任务的模型,谷歌出品。

  • GPT全称 lmproving Language Understanding by Generative Pre-Training,用预训练语言理解模型。OPENAI出品。

  • BERT全称Pre-training of Deep BidirectionalTransformers for Language Understanding,双向预训练语言理解模型。谷歌出品。GPT与BERT都是基于Transformer的模型结构。

  • BERT在学术界比GPT要火很多,BERT论文引用量是58.9K。GPTI.,2.3加起来的论文引用量是17.7K。(截至2023年2月10日)

  • GPTI,2,3本质没有区别,仅是模型参数的数量越来越多。

  • GPT3.5是GPT3在不同任务上微调之后的综合模型。

  • ChatGPT则是利用GPT系列模型封装的智能聊天Al应用。

2.GPT和BERT的区别

模型结构:

  • GPT是一种单向的 Transformer模型,只考虑一个词的左侧上下文。

  • BERT是一种双向的Transformer模型,同时处理一个词的左侧和右侧的上下文。

预训练任务:

  • GPT的预训练任务是Language Modeling,它更注重语言生成。(简单理解,就是文本生成,如写作,写歌词等)

  • BERT的预训练任务是Masked Language Modeling 和Next Sentence Prediction,它更注重语言理解和关系 推断。(简单理解,就是完型填空,与预测B句子是否在A句子后面这两个任务联合训练。)

应用领域:

  • GPT则更专注于语言生成,如文本生成、对话生成等。

  • BERT的应用领域更广泛,可以用于命名实体识别、问答系统、句子相似度等任务。

模型参数量对比

  • BERT-base就是故意做成GPT的大小从而与之比较,结果效果上完胜。

  • GPT2代开始将模型做大,BERT便不再与GPT竞争。

  1. GPT半开源,BERT全开源。这意味着,做产品时可以把BERT模型部署在自己的服务器上从而脱离其母公司,而GPT不可以。

  2. GPT目前有API可调用,BERT没有。这意味着对于普通程序员而言,基于GPT做产品的门槛远低于BERT

  3. GPT的微调不是真正的微调,而是few-shot。

3.微调和Few-Shot

微调

优势:训练效果与普通模型训练没有区别。预训练模型的存在相当于为此次训练做了大量的准备工作。

劣势:所需算力与数据量与普通模型训练没有区别。

Few-Shot

优势:训练省力,计算量小,不需要太多数据。

劣势:容易过拟合。很考验预训练模型的泛化能力。

相关推荐
美狐美颜sdk1 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程1 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝1 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion3 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周3 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享4 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜4 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿4 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_5 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1235 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪