GPT理论

1.GPT发展

  • Transformer是一个用作翻译任务的模型,谷歌出品。

  • GPT全称 lmproving Language Understanding by Generative Pre-Training,用预训练语言理解模型。OPENAI出品。

  • BERT全称Pre-training of Deep BidirectionalTransformers for Language Understanding,双向预训练语言理解模型。谷歌出品。GPT与BERT都是基于Transformer的模型结构。

  • BERT在学术界比GPT要火很多,BERT论文引用量是58.9K。GPTI.,2.3加起来的论文引用量是17.7K。(截至2023年2月10日)

  • GPTI,2,3本质没有区别,仅是模型参数的数量越来越多。

  • GPT3.5是GPT3在不同任务上微调之后的综合模型。

  • ChatGPT则是利用GPT系列模型封装的智能聊天Al应用。

2.GPT和BERT的区别

模型结构:

  • GPT是一种单向的 Transformer模型,只考虑一个词的左侧上下文。

  • BERT是一种双向的Transformer模型,同时处理一个词的左侧和右侧的上下文。

预训练任务:

  • GPT的预训练任务是Language Modeling,它更注重语言生成。(简单理解,就是文本生成,如写作,写歌词等)

  • BERT的预训练任务是Masked Language Modeling 和Next Sentence Prediction,它更注重语言理解和关系 推断。(简单理解,就是完型填空,与预测B句子是否在A句子后面这两个任务联合训练。)

应用领域:

  • GPT则更专注于语言生成,如文本生成、对话生成等。

  • BERT的应用领域更广泛,可以用于命名实体识别、问答系统、句子相似度等任务。

模型参数量对比

  • BERT-base就是故意做成GPT的大小从而与之比较,结果效果上完胜。

  • GPT2代开始将模型做大,BERT便不再与GPT竞争。

  1. GPT半开源,BERT全开源。这意味着,做产品时可以把BERT模型部署在自己的服务器上从而脱离其母公司,而GPT不可以。

  2. GPT目前有API可调用,BERT没有。这意味着对于普通程序员而言,基于GPT做产品的门槛远低于BERT

  3. GPT的微调不是真正的微调,而是few-shot。

3.微调和Few-Shot

微调

优势:训练效果与普通模型训练没有区别。预训练模型的存在相当于为此次训练做了大量的准备工作。

劣势:所需算力与数据量与普通模型训练没有区别。

Few-Shot

优势:训练省力,计算量小,不需要太多数据。

劣势:容易过拟合。很考验预训练模型的泛化能力。

相关推荐
伏小白白白几秒前
【论文精度-1】 组合优化中的机器学习:方法论之旅(Yoshua Bengio, 2021)
人工智能·机器学习·组合优化
CH3_CH2_CHO7 分钟前
DAY03:【DL 第一弹】神经网络
人工智能·pytorch·深度学习·神经网络
算家计算22 分钟前
蚂蚁开源万亿参数大模型Ling-1T:多项能力全球领先
人工智能·开源·资讯
leijiwen23 分钟前
S11e Network 商业模型:AI × Web3 × RWA 驱动的实体经济新范式
人工智能·web3·区块链
说私域1 小时前
技术指数变革下的组织适应性研究:基于定制开发开源AI智能名片S2B2C商城小程序的实践观察
人工智能·小程序·开源
realhuizhu1 小时前
📚 技术人的阅读提效神器:多语言智能中文摘要生成指令
人工智能·ai·chatgpt·prompt·提示词·总结·deepseek·摘要
szxinmai主板定制专家1 小时前
一种基于 RK3568+AI 的国产化充电桩安全智能交互终端的设计与实现,终端支持各种复杂的交互功能和实时数据处理需求
arm开发·人工智能·嵌入式硬件·安全
apocalypsx1 小时前
深度学习-Kaggle实战1(房价预测)
人工智能·深度学习
春末的南方城市1 小时前
开放指令编辑创新突破!小米开源 Lego-Edit 登顶 SOTA:用强化学习为 MLLM 编辑开辟全新赛道!
人工智能·深度学习·机器学习·计算机视觉·aigc