GPT理论

1.GPT发展

  • Transformer是一个用作翻译任务的模型,谷歌出品。

  • GPT全称 lmproving Language Understanding by Generative Pre-Training,用预训练语言理解模型。OPENAI出品。

  • BERT全称Pre-training of Deep BidirectionalTransformers for Language Understanding,双向预训练语言理解模型。谷歌出品。GPT与BERT都是基于Transformer的模型结构。

  • BERT在学术界比GPT要火很多,BERT论文引用量是58.9K。GPTI.,2.3加起来的论文引用量是17.7K。(截至2023年2月10日)

  • GPTI,2,3本质没有区别,仅是模型参数的数量越来越多。

  • GPT3.5是GPT3在不同任务上微调之后的综合模型。

  • ChatGPT则是利用GPT系列模型封装的智能聊天Al应用。

2.GPT和BERT的区别

模型结构:

  • GPT是一种单向的 Transformer模型,只考虑一个词的左侧上下文。

  • BERT是一种双向的Transformer模型,同时处理一个词的左侧和右侧的上下文。

预训练任务:

  • GPT的预训练任务是Language Modeling,它更注重语言生成。(简单理解,就是文本生成,如写作,写歌词等)

  • BERT的预训练任务是Masked Language Modeling 和Next Sentence Prediction,它更注重语言理解和关系 推断。(简单理解,就是完型填空,与预测B句子是否在A句子后面这两个任务联合训练。)

应用领域:

  • GPT则更专注于语言生成,如文本生成、对话生成等。

  • BERT的应用领域更广泛,可以用于命名实体识别、问答系统、句子相似度等任务。

模型参数量对比

  • BERT-base就是故意做成GPT的大小从而与之比较,结果效果上完胜。

  • GPT2代开始将模型做大,BERT便不再与GPT竞争。

  1. GPT半开源,BERT全开源。这意味着,做产品时可以把BERT模型部署在自己的服务器上从而脱离其母公司,而GPT不可以。

  2. GPT目前有API可调用,BERT没有。这意味着对于普通程序员而言,基于GPT做产品的门槛远低于BERT

  3. GPT的微调不是真正的微调,而是few-shot。

3.微调和Few-Shot

微调

优势:训练效果与普通模型训练没有区别。预训练模型的存在相当于为此次训练做了大量的准备工作。

劣势:所需算力与数据量与普通模型训练没有区别。

Few-Shot

优势:训练省力,计算量小,不需要太多数据。

劣势:容易过拟合。很考验预训练模型的泛化能力。

相关推荐
阿坡RPA11 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499312 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心12 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI14 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c15 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20515 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清15 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh16 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员16 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物16 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技