XR图和XS图中X-bar图的最大不同

XR(X-bar和R图)与XS(X-bar和S图)中的X-bar图在计算上下限时使用的算法不同,主要在于它们分别采用了极差R和标准差S作为评估过程变异性的指标。

⭐️ XR中的X-bar图

在XR图中,X-bar图用于监控一段时间内样本均值的变化,以检测过程的中心值是否发生偏移。计算X-bar图的上下限时,通常使用极差R来估计过程的标准差,进而确定控制限。这是因为在实际应用中,标准差σ往往是未知的,需要通过样本数据来估计。极差R作为样本内数据最大值和最小值之差,是一种简便的估计σ的方法。

X-bar图的上下限(控制限)的计算方法之一是使用"参数法",其中上控制限(UCL)和下控制限(LCL)可以分别表示为:

上控制限(UCL): X ‾ + A 2 × R ‾ \overline{X} + A_2 × \overline{R} X+A2×R

下控制限(LCL): X ‾ − A 2 × R ‾ \overline{X} - A_2 × \overline{R} X−A2×R

这里, A 2 A_2 A2是一个常数,取决于子组大小n,用于调整极差以更好地估计标准差σ。注意,这里 R ‾ \overline{R} R 是多个子组极差的平均值,用于进一步平滑估计。

⭐️ XS中的X-bar图

在XS图中,X-bar图同样用于监控样本组的平均值,但计算上下限时使用的是标准差S,这是通过计算每个样本组内部数据的标准差得出的,更能准确反映组内数据的离散程度。XS图比XR图更适合样本组数较大或过程波动性较大的场景。

X-bar图的上下限在XS图中通常基于正态分布来计算,但由于σ是未知的,需要通过样本数据来估计。因此,实际计算中会使用样本标准差S来替代σ,上下限可以表示为:

上控制限(UCL): X ‾ + A 3 × S ‾ \overline{X} + A_3 × \overline{S} X+A3×S

下控制限(LCL): X ‾ − A 3 × S ‾ \overline{X} - A_3 × \overline{S} X−A3×S

这里, A 3 A_3 A3是一个常数,取决于子组大小n,用于调整样本标准差以更好地估计标准差σ, S ‾ \overline{S} S 是多个样本组标准差的某种综合估计(如平均值或加权平均值),具体取决于具体的统计方法和应用场景。

综上所述,XR中的X-bar图使用极差R来估计标准差并计算控制限,而XS中的X-bar图则直接使用样本标准差S来计算控制限,两者在计算上下限时的方法上有所不同。

相关推荐
SweetCode5 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc18 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
ゞ 正在缓冲99%…18 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong19 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
xcLeigh26 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能29 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820938 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
惊鸿.Jh38 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L39 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
果冻人工智能39 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能