XR图和XS图中X-bar图的最大不同

XR(X-bar和R图)与XS(X-bar和S图)中的X-bar图在计算上下限时使用的算法不同,主要在于它们分别采用了极差R和标准差S作为评估过程变异性的指标。

⭐️ XR中的X-bar图

在XR图中,X-bar图用于监控一段时间内样本均值的变化,以检测过程的中心值是否发生偏移。计算X-bar图的上下限时,通常使用极差R来估计过程的标准差,进而确定控制限。这是因为在实际应用中,标准差σ往往是未知的,需要通过样本数据来估计。极差R作为样本内数据最大值和最小值之差,是一种简便的估计σ的方法。

X-bar图的上下限(控制限)的计算方法之一是使用"参数法",其中上控制限(UCL)和下控制限(LCL)可以分别表示为:

上控制限(UCL): X ‾ + A 2 × R ‾ \overline{X} + A_2 × \overline{R} X+A2×R

下控制限(LCL): X ‾ − A 2 × R ‾ \overline{X} - A_2 × \overline{R} X−A2×R

这里, A 2 A_2 A2是一个常数,取决于子组大小n,用于调整极差以更好地估计标准差σ。注意,这里 R ‾ \overline{R} R 是多个子组极差的平均值,用于进一步平滑估计。

⭐️ XS中的X-bar图

在XS图中,X-bar图同样用于监控样本组的平均值,但计算上下限时使用的是标准差S,这是通过计算每个样本组内部数据的标准差得出的,更能准确反映组内数据的离散程度。XS图比XR图更适合样本组数较大或过程波动性较大的场景。

X-bar图的上下限在XS图中通常基于正态分布来计算,但由于σ是未知的,需要通过样本数据来估计。因此,实际计算中会使用样本标准差S来替代σ,上下限可以表示为:

上控制限(UCL): X ‾ + A 3 × S ‾ \overline{X} + A_3 × \overline{S} X+A3×S

下控制限(LCL): X ‾ − A 3 × S ‾ \overline{X} - A_3 × \overline{S} X−A3×S

这里, A 3 A_3 A3是一个常数,取决于子组大小n,用于调整样本标准差以更好地估计标准差σ, S ‾ \overline{S} S 是多个样本组标准差的某种综合估计(如平均值或加权平均值),具体取决于具体的统计方法和应用场景。

综上所述,XR中的X-bar图使用极差R来估计标准差并计算控制限,而XS中的X-bar图则直接使用样本标准差S来计算控制限,两者在计算上下限时的方法上有所不同。

相关推荐
呆瑜nuage4 分钟前
数据结构——堆
数据结构
蓝澈112110 分钟前
弗洛伊德(Floyd)算法-各个顶点之间的最短路径问题
java·数据结构·动态规划
zl_dfq13 分钟前
数据结构 之 【堆】(堆的概念及结构、大根堆的实现、向上调整法、向下调整法)(C语言实现)
数据结构
127_127_12715 分钟前
2025 FJCPC 复建 VP
数据结构·图论·模拟·ad-hoc·分治·转化
闪电麦坤9519 分钟前
数据结构:二维数组(2D Arrays)
数据结构·算法
凌肖战31 分钟前
力扣网C语言编程题:快慢指针来解决 “寻找重复数”
c语言·算法·leetcode
麻雀无能为力38 分钟前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人1 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法1 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾1 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor