XR图和XS图中X-bar图的最大不同

XR(X-bar和R图)与XS(X-bar和S图)中的X-bar图在计算上下限时使用的算法不同,主要在于它们分别采用了极差R和标准差S作为评估过程变异性的指标。

⭐️ XR中的X-bar图

在XR图中,X-bar图用于监控一段时间内样本均值的变化,以检测过程的中心值是否发生偏移。计算X-bar图的上下限时,通常使用极差R来估计过程的标准差,进而确定控制限。这是因为在实际应用中,标准差σ往往是未知的,需要通过样本数据来估计。极差R作为样本内数据最大值和最小值之差,是一种简便的估计σ的方法。

X-bar图的上下限(控制限)的计算方法之一是使用"参数法",其中上控制限(UCL)和下控制限(LCL)可以分别表示为:

上控制限(UCL): X ‾ + A 2 × R ‾ \overline{X} + A_2 × \overline{R} X+A2×R

下控制限(LCL): X ‾ − A 2 × R ‾ \overline{X} - A_2 × \overline{R} X−A2×R

这里, A 2 A_2 A2是一个常数,取决于子组大小n,用于调整极差以更好地估计标准差σ。注意,这里 R ‾ \overline{R} R 是多个子组极差的平均值,用于进一步平滑估计。

⭐️ XS中的X-bar图

在XS图中,X-bar图同样用于监控样本组的平均值,但计算上下限时使用的是标准差S,这是通过计算每个样本组内部数据的标准差得出的,更能准确反映组内数据的离散程度。XS图比XR图更适合样本组数较大或过程波动性较大的场景。

X-bar图的上下限在XS图中通常基于正态分布来计算,但由于σ是未知的,需要通过样本数据来估计。因此,实际计算中会使用样本标准差S来替代σ,上下限可以表示为:

上控制限(UCL): X ‾ + A 3 × S ‾ \overline{X} + A_3 × \overline{S} X+A3×S

下控制限(LCL): X ‾ − A 3 × S ‾ \overline{X} - A_3 × \overline{S} X−A3×S

这里, A 3 A_3 A3是一个常数,取决于子组大小n,用于调整样本标准差以更好地估计标准差σ, S ‾ \overline{S} S 是多个样本组标准差的某种综合估计(如平均值或加权平均值),具体取决于具体的统计方法和应用场景。

综上所述,XR中的X-bar图使用极差R来估计标准差并计算控制限,而XS中的X-bar图则直接使用样本标准差S来计算控制限,两者在计算上下限时的方法上有所不同。

相关推荐
WWZZ20252 分钟前
快速上手大模型:机器学习1
人工智能·深度学习·机器学习·计算机视觉·机器人·slam
JAVA学习通14 分钟前
JDK高版本特性总结与ZGC实践
java·jvm·算法
syty202016 分钟前
简简单单区块链
算法·哈希算法
CoovallyAIHub21 分钟前
CLIP, DINO等多模型融合DreamSim,让电脑“看懂”图片有多像!模型融合成为热门!
深度学习·算法·计算机视觉
沫儿笙22 分钟前
川崎焊接机器人弧焊气体节约
人工智能·机器人
新知图书22 分钟前
多模态大模型的应用场景
人工智能·大模型应用开发·大模型应用
Giser探索家27 分钟前
遥感卫星升轨 / 降轨技术解析:对图像光照、对比度的影响及工程化应用
大数据·人工智能·算法·安全·计算机视觉·分类
仰泳的熊猫32 分钟前
LeetCode:700. 二叉搜索树中的搜索
数据结构·c++·算法·leetcode
嵌入式-老费32 分钟前
Easyx图形库应用(图形旋转)
算法
Mr数据杨37 分钟前
【ComfyUI】Animate单人物角色视频替换
人工智能·计算机视觉·音视频