libtorch落地AI项目的一些总结

总结

1. 为啥C++ 写AI

  1. C++ 是一个非常强大的编程语言,它具有非常强大的计算能力,可以处理非常大的数据集,并且可以非常快速地完成计算。
  2. 很多项目需要嵌入式部署,C++ 是一个非常适合的编程语言。
  3. C++ 可以非常快速地完成计算,并且可以非常快速地完成计算。

2. C++写AI的好处

  1. 计算效率高
  2. AI只是项目的一部分,方便集成测试

3. C++落地AI需要注意什么?

  1. 平台选择:ARM还是x86架构?区别还是很大的
  2. linux环境推荐,毕竟很多嵌入式项目是linux
  3. libtorch的版本与pytorch的版本需要匹配

3.1 torch.jit.trace与torch.jit.script的区别

  1. Tochscript:狭义概念导出图形的表示/格式;广义概念为导出模型的方法;
  2. (Torch)Scriptable:可以用torch.jit.script导出模型
  3. Traceable:可以用torch.jit.trace导出模型
什么时候用torch.jit.trace(结论:首选)
  1. torch.jit.trace一种导出方法;它运行具有某些张量输入的模型,并"跟踪/记录"所有执行到图形中的操作。
  2. 在模型内部的数据类型只有张量,且没有for if while等控制流,选择torch.jit.trace
  3. 支持python的预处理和动态行为;
  4. torch.jit.trace编译function并返回一个可执行文件,该可执行文件将使用即时编译进行优化。
  5. 大项目优先选择torch.jit.trace,特别是是图像检测和分割的算法;
优点
  1. 不会损害代码质量;
  2. 它的主要限制可以通过与torch.jit.script混合来解决
什么时候用torch.jit.script(结论:必要时)
  1. 定义:一种模型导出方法,其实编译python的模型源码,得到可执行的图;
  2. 在模型内部的数据类型只有张量,且没有for if while等控制流,也可以选择torch.jit.script
  3. 不支持python的预处理和动态行为;
  4. 必须做一下类型标注;
  5. torch.jit.script在编译function或 nn.Module 脚本将检查源代码,使用 TorchScript 编译器将其编译为 TorchScript 代码。
相关推荐
geneculture18 小时前
数学实在性问题的融智学解决方案
人工智能·信息科学·融智学的重要应用·融智时代(杂志)·融智时代·数学哲学·抽象实体
16Miku18 小时前
Qwen3-8B vLLM 部署实践教程(AutoDL 平台)
人工智能·ai·autodl·vllm·部署大模型·qwen3-8b
RaymondZhao3418 小时前
【深度硬核】AI Infra 架构漫游指南
人工智能·深度学习·架构
wshzd18 小时前
从“个人高效”到“团队飞跃”:Prompt商城
人工智能
Coovally AI模型快速验证19 小时前
YOLO11算法深度解析:四大工业场景实战,开源数据集助力AI质检落地
人工智能·神经网络·算法·计算机视觉·无人机
天辛大师19 小时前
2026年丙午年火马年周易运势与AI预测大模型启示录
大数据·人工智能·游戏·随机森林·启发式算法
惊鸿一博19 小时前
深度学习概念_随机梯度下降 与 ADAM 的区别与联系 公式化表达
人工智能·深度学习
Coder_Boy_19 小时前
基于DDD+Spring Boot 3.2+LangChain4j构建企业级智能客服系统 版本升级
java·人工智能·spring boot·后端·langchain
阿里云大数据AI技术19 小时前
Apache Paimon 多模态数据湖实践:从结构化到非结构化的技术演进
大数据·人工智能
分布式存储与RustFS19 小时前
实测!Windows环境下RustFS的安装与避坑指南
人工智能·windows·rust·对象存储·企业存储·rustfs