libtorch落地AI项目的一些总结

总结

1. 为啥C++ 写AI

  1. C++ 是一个非常强大的编程语言,它具有非常强大的计算能力,可以处理非常大的数据集,并且可以非常快速地完成计算。
  2. 很多项目需要嵌入式部署,C++ 是一个非常适合的编程语言。
  3. C++ 可以非常快速地完成计算,并且可以非常快速地完成计算。

2. C++写AI的好处

  1. 计算效率高
  2. AI只是项目的一部分,方便集成测试

3. C++落地AI需要注意什么?

  1. 平台选择:ARM还是x86架构?区别还是很大的
  2. linux环境推荐,毕竟很多嵌入式项目是linux
  3. libtorch的版本与pytorch的版本需要匹配

3.1 torch.jit.trace与torch.jit.script的区别

  1. Tochscript:狭义概念导出图形的表示/格式;广义概念为导出模型的方法;
  2. (Torch)Scriptable:可以用torch.jit.script导出模型
  3. Traceable:可以用torch.jit.trace导出模型
什么时候用torch.jit.trace(结论:首选)
  1. torch.jit.trace一种导出方法;它运行具有某些张量输入的模型,并"跟踪/记录"所有执行到图形中的操作。
  2. 在模型内部的数据类型只有张量,且没有for if while等控制流,选择torch.jit.trace
  3. 支持python的预处理和动态行为;
  4. torch.jit.trace编译function并返回一个可执行文件,该可执行文件将使用即时编译进行优化。
  5. 大项目优先选择torch.jit.trace,特别是是图像检测和分割的算法;
优点
  1. 不会损害代码质量;
  2. 它的主要限制可以通过与torch.jit.script混合来解决
什么时候用torch.jit.script(结论:必要时)
  1. 定义:一种模型导出方法,其实编译python的模型源码,得到可执行的图;
  2. 在模型内部的数据类型只有张量,且没有for if while等控制流,也可以选择torch.jit.script
  3. 不支持python的预处理和动态行为;
  4. 必须做一下类型标注;
  5. torch.jit.script在编译function或 nn.Module 脚本将检查源代码,使用 TorchScript 编译器将其编译为 TorchScript 代码。
相关推荐
普通老人6 分钟前
【人工智能】一些基本概念
人工智能
后端小肥肠11 分钟前
Coze实战:一分钟生成10w+独居女孩Vlog动画,零基础也能日更!
人工智能·aigc·coze
Blossom.11816 分钟前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
未来影子18 分钟前
SpringAI(GA):SpringAI下的MCP源码解读
人工智能·架构·ai编程
ai技术玩家26 分钟前
8个AI软件介绍及其工作原理讲解
人工智能
AI.NET 极客圈41 分钟前
.NET 原生驾驭 AI 新基建实战系列(四):Qdrant ── 实时高效的向量搜索利器
数据库·人工智能·.net
用户21411832636021 小时前
dify案例分享--告别手工录入!Dify 工作流批量识别电子发票,5分钟生成Excel表格
前端·人工智能
SweetRetry1 小时前
前端依赖管理实战:从臃肿到精简的优化之路
前端·人工智能
Icoolkj1 小时前
Komiko 视频到视频功能炸裂上线!
人工智能·音视频
LLM大模型1 小时前
LangChain篇-提示词工程应用实践
人工智能·程序员·llm