Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

I realize that for logistic regression, it has different coefficients generated by Sklearn LogisticRegression() and Statsmodel.

Why there's the difference? Why there's no difference between the two libraries when fitting a linear model?

(We use Statsmodel in our class. )

在比较sklearnLogisticRegressionstatsmodels的逻辑回归系数时,我们需要注意几个关键点:

  1. 目标函数不同sklearnLogisticRegression默认使用L2正则化,而statsmodels则不包括正则化,除非你明确添加。正则化可以影响系数的大小和模型的复杂度。

  2. 优化算法sklearnLogisticRegression使用的优化算法(如lbfgsliblinear等)可能与statsmodels的算法不同,这可能导致系数估计的差异。

  3. 数值优化的收敛标准sklearnstatsmodels在数值优化过程中可能使用不同的收敛标准,这可能导致在迭代过程中停止的点不同,从而影响最终的系数估计。

  4. 数据预处理sklearn通常需要你手动对数据进行预处理(如标准化),而statsmodels则可能在内部进行某些预处理步骤。

  5. 截距的处理sklearnLogisticRegression默认包含截距,而statsmodels的逻辑回归可以通过设置fit_intercept=False来排除截距。

  6. 多分类处理 :当处理多分类问题时,sklearn使用one-vs-rest(OvR)的方式,而statsmodels可能使用其他方法,如多项式逻辑回归。

  7. 输出解释statsmodels提供了更丰富的统计输出,包括系数的置信区间、z值、p值等,而sklearn则主要关注预测准确率和系数的大小。

对于线性回归模型,sklearnLinearRegressionstatsmodels的线性回归通常不会有太大差异,因为它们都是在没有正则化的情况下使用最小二乘法进行拟合,目标是最小化残差的平方和。这意味着在拟合线性模型时,两者的系数估计应该是一致的,前提是数据预处理方式相同。

总结来说,sklearnstatsmodels在逻辑回归系数上的差异主要是由于它们在正则化、优化算法、收敛标准和数据预处理方面的差异。而在线性回归中,由于方法和目标函数的一致性,它们通常会给出相似的结果。

相关推荐
北辰alk3 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云3 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10433 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里3 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1783 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
北岛寒沫3 小时前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
盛世宏博北京3 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python3 小时前
MongoDB-only方法
python·sql
优雅的潮叭4 小时前
c++ 学习笔记之 malloc
c++·笔记·学习
TGITCIC4 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag