Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

I realize that for logistic regression, it has different coefficients generated by Sklearn LogisticRegression() and Statsmodel.

Why there's the difference? Why there's no difference between the two libraries when fitting a linear model?

(We use Statsmodel in our class. )

在比较sklearnLogisticRegressionstatsmodels的逻辑回归系数时,我们需要注意几个关键点:

  1. 目标函数不同sklearnLogisticRegression默认使用L2正则化,而statsmodels则不包括正则化,除非你明确添加。正则化可以影响系数的大小和模型的复杂度。

  2. 优化算法sklearnLogisticRegression使用的优化算法(如lbfgsliblinear等)可能与statsmodels的算法不同,这可能导致系数估计的差异。

  3. 数值优化的收敛标准sklearnstatsmodels在数值优化过程中可能使用不同的收敛标准,这可能导致在迭代过程中停止的点不同,从而影响最终的系数估计。

  4. 数据预处理sklearn通常需要你手动对数据进行预处理(如标准化),而statsmodels则可能在内部进行某些预处理步骤。

  5. 截距的处理sklearnLogisticRegression默认包含截距,而statsmodels的逻辑回归可以通过设置fit_intercept=False来排除截距。

  6. 多分类处理 :当处理多分类问题时,sklearn使用one-vs-rest(OvR)的方式,而statsmodels可能使用其他方法,如多项式逻辑回归。

  7. 输出解释statsmodels提供了更丰富的统计输出,包括系数的置信区间、z值、p值等,而sklearn则主要关注预测准确率和系数的大小。

对于线性回归模型,sklearnLinearRegressionstatsmodels的线性回归通常不会有太大差异,因为它们都是在没有正则化的情况下使用最小二乘法进行拟合,目标是最小化残差的平方和。这意味着在拟合线性模型时,两者的系数估计应该是一致的,前提是数据预处理方式相同。

总结来说,sklearnstatsmodels在逻辑回归系数上的差异主要是由于它们在正则化、优化算法、收敛标准和数据预处理方面的差异。而在线性回归中,由于方法和目标函数的一致性,它们通常会给出相似的结果。

相关推荐
Ro Jace21 分钟前
文献阅读笔记:R&S电子战测试与测量技术文档
笔记
Dxy123931021624 分钟前
python把文件从一个文件复制到另一个文件夹
开发语言·python
金井PRATHAMA41 分钟前
认知语义学隐喻理论对人工智能自然语言处理中深层语义分析的赋能与挑战
人工智能·自然语言处理·知识图谱
J_Xiong01171 小时前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
sonrisa_1 小时前
collections模块
python
老兵发新帖1 小时前
LlamaFactory能做哪些?
人工智能
2202_756749691 小时前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
折翼的恶魔1 小时前
数据分析:排序
python·数据分析·pandas
人有一心1 小时前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习