Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

Logistic Regression 使用不同library系数不一样?Sklearn vs. Statsmodel

I realize that for logistic regression, it has different coefficients generated by Sklearn LogisticRegression() and Statsmodel.

Why there's the difference? Why there's no difference between the two libraries when fitting a linear model?

(We use Statsmodel in our class. )

在比较sklearnLogisticRegressionstatsmodels的逻辑回归系数时,我们需要注意几个关键点:

  1. 目标函数不同sklearnLogisticRegression默认使用L2正则化,而statsmodels则不包括正则化,除非你明确添加。正则化可以影响系数的大小和模型的复杂度。

  2. 优化算法sklearnLogisticRegression使用的优化算法(如lbfgsliblinear等)可能与statsmodels的算法不同,这可能导致系数估计的差异。

  3. 数值优化的收敛标准sklearnstatsmodels在数值优化过程中可能使用不同的收敛标准,这可能导致在迭代过程中停止的点不同,从而影响最终的系数估计。

  4. 数据预处理sklearn通常需要你手动对数据进行预处理(如标准化),而statsmodels则可能在内部进行某些预处理步骤。

  5. 截距的处理sklearnLogisticRegression默认包含截距,而statsmodels的逻辑回归可以通过设置fit_intercept=False来排除截距。

  6. 多分类处理 :当处理多分类问题时,sklearn使用one-vs-rest(OvR)的方式,而statsmodels可能使用其他方法,如多项式逻辑回归。

  7. 输出解释statsmodels提供了更丰富的统计输出,包括系数的置信区间、z值、p值等,而sklearn则主要关注预测准确率和系数的大小。

对于线性回归模型,sklearnLinearRegressionstatsmodels的线性回归通常不会有太大差异,因为它们都是在没有正则化的情况下使用最小二乘法进行拟合,目标是最小化残差的平方和。这意味着在拟合线性模型时,两者的系数估计应该是一致的,前提是数据预处理方式相同。

总结来说,sklearnstatsmodels在逻辑回归系数上的差异主要是由于它们在正则化、优化算法、收敛标准和数据预处理方面的差异。而在线性回归中,由于方法和目标函数的一致性,它们通常会给出相似的结果。

相关推荐
J不A秃V头A3 分钟前
Python爬虫:获取国家货币编码、货币名称
开发语言·爬虫·python
阿斯卡码1 小时前
jupyter添加、删除、查看内核
ide·python·jupyter
小于小于大橙子3 小时前
视觉SLAM数学基础
人工智能·数码相机·自动化·自动驾驶·几何学
2401_858286113 小时前
L7.【LeetCode笔记】相交链表
笔记·leetcode·链表
埃菲尔铁塔_CV算法4 小时前
图像算法之 OCR 识别算法:原理与应用场景
图像处理·python·计算机视觉
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
封步宇AIGC4 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
龙中舞王5 小时前
Unity学习笔记(2):场景绘制
笔记·学习·unity
陌上阳光5 小时前
动手学深度学习68 Transformer
人工智能·深度学习·transformer
OpenI启智社区5 小时前
共筑开源技术新篇章 | 2024 CCF中国开源大会盛大开幕
人工智能·开源·ccf中国开源大会·大湾区