[leetcode] 70. 爬楼梯

文章目录

题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 12 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

复制代码
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

复制代码
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
3. 1 阶 + 1 阶 + 1 阶
4. 1 阶 + 2 阶
5. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

解题方法

动态规划

这道题目求解符合斐波那契数列的特点。当我们爬到第n阶楼梯时,最后一步一共有两种情况,要么从第n - 1阶楼梯迈1步,要么从第n - 2阶楼梯迈2步;所以爬到第n阶楼梯的方法数等于爬到第n - 1阶楼梯的方法数加上爬到第n - 2阶楼梯的方法数。

我们可以总结出如下规律,设 f ( n ) f(n) f(n)为爬到第n阶楼梯的方法数,则:

  • 当 n = 0 n = 0 n=0时, f ( 0 ) = 1 f(0) = 1 f(0)=1
  • 当 n = 1 n = 1 n=1时, f ( 1 ) = 1 f(1) = 1 f(1)=1
  • 当 n > 1 n > 1 n>1时, f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n) = f(n-1) + f(n-2) f(n)=f(n−1)+f(n−2)

根据规律使用动态规划即可求解。

java代码

java 复制代码
public int climbStairs(int n) {
    int[] dp = new int[n + 1];
    dp[0] = 1;
    dp[1] = 1;
    for (int i = 2; i <= n; i++) {
        dp[i] = dp[i - 2] + dp[i - 1];
    }
    return dp[n];
}

复杂度分析

  • 时间复杂度: O ( N ) O(N) O(N)
  • 空间复杂度: O ( N ) O(N) O(N)

  • 个人小游戏

相关推荐
此木|西贝1 小时前
【设计模式】享元模式
java·设计模式·享元模式
এ᭄画画的北北2 小时前
力扣-234.回文链表
算法·leetcode·链表
李少兄2 小时前
解决Spring Boot多模块自动配置失效问题
java·spring boot·后端
bxlj_jcj2 小时前
JVM性能优化之年轻代参数设置
java·性能优化
八股文领域大手子2 小时前
深入理解缓存淘汰策略:LRU 与 LFU 算法详解及 Java 实现
java·数据库·算法·缓存·mybatis·哈希算法
不当菜虚困3 小时前
JAVA设计模式——(八)单例模式
java·单例模式·设计模式
m0_740154673 小时前
Maven概述
java·maven
__lost3 小时前
C++ 解决一个简单的图论问题 —— 最小生成树(以 Prim 算法为例)
算法·图论·最小生成树·prim算法
吗喽对你问好3 小时前
Java位运算符大全
java·开发语言·位运算