新书推荐——《深度学习精粹与PyTorch实践》

深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。

本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。

《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。

本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。

本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行!

主要内容

● 选择正确的深度学习组件
● 训练和评估深度学习模型
● 微调深度学习模型以实现性能最大化了解深度学习术语

作者简介

Edward Raff博士是Booz Allen Hamilton公司的首席科学家,也是战略创新集团机器学习研究团队的共同负责人。他的工作涉及监督内部研究、招聘和培养技术人才、与高校合作伙伴合作以及专门从事高端机器学习的业务开发。Raff博士还协助几位客户开展高级研究。

他对机器学习的写作、开发和教学的热情源于他渴望分享自己对机器学习所有领域的热爱。他是Java统计分析工具(Java Statistical Analysis Tool,JSAT)的创建者,JSAT是一个用于在Java中进行快速机器学习的库。他目前带有5名博士生,编写了60多种出版物,并获得了3项最佳论文奖。

相关推荐
老兵发新帖9 分钟前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐12 分钟前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard39 分钟前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
人工智能培训1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊1 小时前
【AI技术安全】
网络·人工智能·安全
玄同7651 小时前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
永恒的溪流1 小时前
环境出问题,再修改
pytorch·python·深度学习
Fxrain1 小时前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing1 小时前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP1 小时前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转