新书推荐——《深度学习精粹与PyTorch实践》

深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。

本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。

《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。

本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。

本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行!

主要内容

● 选择正确的深度学习组件
● 训练和评估深度学习模型
● 微调深度学习模型以实现性能最大化了解深度学习术语

作者简介

Edward Raff博士是Booz Allen Hamilton公司的首席科学家,也是战略创新集团机器学习研究团队的共同负责人。他的工作涉及监督内部研究、招聘和培养技术人才、与高校合作伙伴合作以及专门从事高端机器学习的业务开发。Raff博士还协助几位客户开展高级研究。

他对机器学习的写作、开发和教学的热情源于他渴望分享自己对机器学习所有领域的热爱。他是Java统计分析工具(Java Statistical Analysis Tool,JSAT)的创建者,JSAT是一个用于在Java中进行快速机器学习的库。他目前带有5名博士生,编写了60多种出版物,并获得了3项最佳论文奖。

相关推荐
guanshiyishi2 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash2 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki2 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen3 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5894 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库4 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe5 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
byxdaz5 小时前
PyTorch中Linear全连接层
pytorch
Start_Present5 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
ZStack开发者社区5 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算