Pyspark DataFrame中Column使用

文章目录

  • [pyspark dataframe Column](#pyspark dataframe Column)
    • [alias 重命名列(name)](#alias 重命名列(name))
    • [astype alias cast 修改列类型](#astype alias cast 修改列类型)
    • [between 筛选](#between 筛选)
    • [bitwiseAND 按位运](#bitwiseAND 按位运)
    • [contains 包含元素](#contains 包含元素)
    • [withField 字段表达式操作](#withField 字段表达式操作)
    • [dropFields 删除字段](#dropFields 删除字段)
    • [getField 获取列](#getField 获取列)
    • [startswitch 字符串开头](#startswitch 字符串开头)
    • [endswith 字符串结尾](#endswith 字符串结尾)
    • [like 模糊匹配](#like 模糊匹配)
    • [ilike 模糊匹配不分大小写](#ilike 模糊匹配不分大小写)
    • [rlike 正则匹配](#rlike 正则匹配)
    • [isNotNull 列不为控制](#isNotNull 列不为控制)
    • [isNull 列为空](#isNull 列为空)
    • [isin 根据范围筛选](#isin 根据范围筛选)
    • [when 与 otherwise 配合使用](#when 与 otherwise 配合使用)
    • [substr 返回列的字串](#substr 返回列的字串)

pyspark dataframe Column

alias 重命名列(name)

df = spark.createDataFrame(
     [(2, "Alice"), (5, "Bob")], ["age", "name"])
df.select(df.age.alias("age2")).show()
+----+
|age2|
+----+
|   2|
|   5|
+----+

astype alias cast 修改列类型

data.schema
StructType([StructField('name', StringType(), True), StructField('age', StringType(), True), StructField('id', StringType(), True), StructField('gender', StringType(), True)])
data.printSchema()
root
 |-- name: string (nullable = true)
 |-- age: string (nullable = true)
 |-- id: string (nullable = true)
 |-- gender: string (nullable = true)

# 增加一列使用cast修改类型
from pyspark.sql.types import LongType
data.withColumn('age2',data['age'].cast(LongType())).show()
+-----+---+---+------+----+
| name|age| id|gender|age2|
+-----+---+---+------+----+
| ldsx| 12|  1|    男|  12|
|test1| 20|  1|    女|  20|
|test2| 26|  1|    男|  26|
|test3| 19|  1|    女|  19|
|test4| 51|  1|    女|  51|
|test5| 13|  1|    男|  13|
+-----+---+---+------+----+
# 查看scheam
data.withColumn('age2',data['age'].cast(LongType())).schema
StructType([StructField('name', StringType(), True), StructField('age', StringType(), True), StructField('id', StringType(), True), StructField('gender', StringType(), True), StructField('age2', LongType(), True)])
data.withColumn('age2',data['age'].cast(LongType())).printSchema()
root
 |-- name: string (nullable = true)
 |-- age: string (nullable = true)
 |-- id: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- age2: long (nullable = true)
 
 # 结合别名使用
 data.select(df.age.cast("string").alias('ages')).collect()

between 筛选

df.select('name',df.age.between(1,5)).show()
+-----+---------------------------+
| name|((age >= 1) AND (age <= 5))|
+-----+---------------------------+
|Alice|                       true|
|  Bob|                       true|
+-----+---------------------------+
df.select('name',df.age.between(1,5).alias('ldsx')).show()
+-----+----+
| name|ldsx|
+-----+----+
|Alice|true|
|  Bob|true|
+-----+----+

# filter 通过bool值过滤
df.filter(df.age.between(1,5)).show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
|  5|  Bob|
+---+-----+

bitwiseAND 按位运

df = spark.createDataFrame([Row(a=170, b=75)])
df.show()
+---+---+
|  a|  b|
+---+---+
|170| 75|
+---+---+
# 列于列按位计算
df.select(df.a.bitwiseAND(df.b)).show()
+-------+
|(a & b)|
+-------+
|     10|
+-------+

contains 包含元素

包含其他元素。根据字符串匹配返回一个布尔列。

data.select(data.name.contains('test')).show()
+--------------------+
|contains(name, test)|
+--------------------+
|               false|
|                true|
|                true|
|                true|
|                true|
|                true|
+--------------------+

data.filter(data.name.contains('test')).show()
+-----+---+---+------+
| name|age| id|gender|
+-----+---+---+------+
|test1| 20|  1|    女|
|test2| 26|  1|    男|
|test3| 19|  1|    女|
|test4| 51|  1|    女|
|test5| 13|  1|    男|
+-----+---+---+------+

withField 字段表达式操作

按名称添加/替换StructType中字段的表达式。按名称添加/替换StructType中字段的表达式。

df = spark.createDataFrame([Row(a=Row(b=1, c=2))])
df.show()
+------+
|     a|
+------+
|{1, 2}|
+------+

# 替换df中a类中row对象b的值
df.withColumn('a',df['a'].withField('b',lit(10086))).show()
+----------+
|         a|
+----------+
|{10086, 2}|
+----------+

dropFields 删除字段

StructType中字段的表达式。如果架构不包含字段名,则此操作无效。

df = spark.createDataFrame([Row(a=Row(b=1, c=2, d=3, e=Row(f=4, g=5, h=6)))])
df.show()
+--------------------+
|                   a|
+--------------------+
|{1, 2, 3, {4, 5, 6}}|
+--------------------+

# 修改a列 处理row对象中 b,c
df.withColumn('a', df['a'].dropFields('b', 'c')).show()
+--------------+
|             a|
+--------------+
|{3, {4, 5, 6}}|
+--------------+

# 处理row对象中的嵌套内容
df.withColumn("a", col("a").dropFields("e.g", "e.h")).show()
+--------------+
|             a|
+--------------+
|{1, 2, 3, {4}}|
+--------------+

getField 获取列

在StructType中按名称获取字段的表达式

df = spark.createDataFrame([Row(r=Row(a=1, b="b"))])
df.show()
+------+
|     r|
+------+
|{1, b}|
+------+
df.select(df.r.getField("b")).show()
+---+
|r.b|
+---+
|  b|
+---+
df.select(df.r.b).show()
+---+
|r.b|
+---+
|  b|
+---+

startswitch 字符串开头

字符串以开头。根据字符串匹配返回一个布尔列。

复制代码

endswith 字符串结尾

字符串以结尾。根据字符串匹配返回一个布尔列。

df = spark.createDataFrame(
     [(2, "Alice"), (5, "Bob")], ["age", "name"])
PyDev console: starting.
df.show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
|  5|  Bob|
+---+-----+
df.filter(df.name.endswith('ice')).collect()
[Row(age=2, name='Alice')]


df.select(df.name.endswith('ice')).show()
+-------------------+
|endswith(name, ice)|
+-------------------+
|               true|
|              false|
+-------------------+

like 模糊匹配

df.filter(df.name.ilike('ali%')).show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
+---+-----+

df.filter(df.name.like('ali%')).show()
+---+----+
|age|name|
+---+----+
+---+----+

ilike 模糊匹配不分大小写

不分大小写

df = spark.createDataFrame(
     [(2, "Alice"), (5, "Bob")], ["age", "name"])
df.filter(df.name.ilike('%Ice')).show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
+---+-----+

df.select(df.name.ilike('%Ice')).show()
+-----------------+
|ilike(name, %Ice)|
+-----------------+
|             true|
|            false|
+-----------------+

rlike 正则匹配

df = spark.createDataFrame(
     [(2, "Alice"), (5, "Bob")], ["age", "name"])
df.filter(df.name.rlike('ice$')).collect()
[Row(age=2, name='Alice')]

isNotNull 列不为控制

df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)])

df.filter(df.height.isNotNull()).show()
+----+------+
|name|height|
+----+------+
| Tom|    80|
+----+------+

df.select(df.height.isNotNull()).show()
+--------------------+
|(height IS NOT NULL)|
+--------------------+
|                true|
|               false|
+--------------------+

isNull 列为空

df = spark.createDataFrame([Row(name='Tom', height=80), Row(name='Alice', height=None)])

df.filter(df.height.isNull()).show()
+-----+------+
| name|height|
+-----+------+
|Alice|  null|
+-----+------+
df.select(df.height.isNull()).show()
+----------------+
|(height IS NULL)|
+----------------+
|           false|
|            true|
+----------------+

isin 根据范围筛选

df.select( df.age.isin([1,2,3])).show()
+------------------+
|(age IN (1, 2, 3))|
+------------------+
|              true|
|             false|
+------------------+
df.filter( df.age.isin([1,2,3])).show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
+---+-----+

when 与 otherwise 配合使用

如果未调用Column.otherwise(),则对于不匹配的条件将返回None

df = spark.createDataFrame(
     [(2, "Alice"), (5, "Bob")], ["age", "name"])
     
df.show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
|  5|  Bob|
+---+-----+

# 查询条件进行筛选,当when不配合otherwise 默认使用null代替
df.select(df.name, when(df.age > 3, 1)).show()
+-----+------------------------------+
| name|CASE WHEN (age > 3) THEN 1 END|
+-----+------------------------------+
|Alice|                          null|
|  Bob|                             1|
+-----+------------------------------+

# 使用otherwise 的条件代替null
df.select(df.name, when(df.age > 3, 1).otherwise(0)).show()
+-----+-------------------------------------+
| name|CASE WHEN (age > 3) THEN 1 ELSE 0 END|
+-----+-------------------------------------+
|Alice|                                    0|
|  Bob|                                    1|
+-----+-------------------------------------+

substr 返回列的字串

索引0,1都为从首位开始 (start,end)

df.show()
+---+-----+
|age| name|
+---+-----+
|  2|Alice|
|  5|  Bob|
+---+-----+

# 返回
df.select(df.name.substr(1, 2)).show()
+---------------------+
|substring(name, 1, 2)|
+---------------------+
|                   Al|
|                   Bo|
+---------------------+

df.select(df.name.substr(2, 10).alias("col")).show()
+----+
| col|
+----+
|lice|
|  ob|
+----+
相关推荐
传而习乎9 分钟前
Linux:CentOS 7 解压 7zip 压缩的文件
linux·运维·centos
我们的五年18 分钟前
【Linux课程学习】:进程程序替换,execl,execv,execlp,execvp,execve,execle,execvpe函数
linux·c++·学习
好看资源平台38 分钟前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
IT果果日记40 分钟前
ubuntu 安装 conda
linux·ubuntu·conda
Python私教42 分钟前
ubuntu搭建k8s环境详细教程
linux·ubuntu·kubernetes
PersistJiao1 小时前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
羑悻的小杀马特1 小时前
环境变量简介
linux
进击的六角龙1 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂1 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
湫ccc1 小时前
Python简介以及解释器安装(保姆级教学)
开发语言·python