【pytorch】pytorch入门5:最大池化层(Pooling layers )


文章目录


前言

使用 B站小土堆课程


一、定义概念 + 缩写

  • 池化(Pooling)是深度学习中常用的一种操作,用于降低卷积神经网络(CNN)或循环神经网络(RNN)中的特征图的维度。池化操作的基本思想是将特征图划分为若干个子区域,然后对每个子区域进行统计汇总,常见的池化操作有最大池化和平均池化。

二、参数



  • kernel_size, 卷积核大小

  • stride, 步

  • padding, 填充

  • dilation, 扩张(卷积核的错开)- github 的 conv_arithmetic [1]

  • ceil_mode: floor & ceiling

三、最大池化操作

  • 最大池化操作是一种池化(即降维)的操作,其具体操作方法是取池化核内的最大值
  • 类比:1080p 的视频变成 720p

  • 对左边矩阵以中间的池化核进行池化,得到右边的矩阵
  • Ceil_model == False
    • Ceil_model == True
  • 池化结果


四、使用步骤

py 复制代码
python代码块
matlab 复制代码
matlab代码块
c 复制代码
c代码块

总结


参考文献

1\] https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

相关推荐
盛世宏博北京12 分钟前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python12 分钟前
MongoDB-only方法
python·sql
TGITCIC1 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬1 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao1 小时前
AI工作流如何开始
人工智能
小途软件1 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚2 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
人工智能AI技术2 小时前
多智能体开发实战:从需求拆解到落地部署,这套工程化方案直接复用
人工智能
我的offer在哪里2 小时前
Hugging Face 生态全景图:从数据到部署的全链路 AI 工厂
人工智能
田井中律.2 小时前
多模态RAG实战指南
人工智能