《动手学深度学习》笔记2.4——神经网络从基础→进阶 (文件读写-保存参数和模型)

目录

[0. 前言](#0. 前言)

正文:读写文件

[1. 加载和保存张量](#1. 加载和保存张量)

[2. 加载和保存模型参数](#2. 加载和保存模型参数)

[3. 小结](#3. 小结)


0. 前言

正文:读写文件

到目前为止,我们讨论了如何处理数据, 以及如何构建、训练和测试深度学习模型。 然而,有时我们希望保存训练的模型, 以备将来在各种环境中使用(比如在部署中进行预测)。 此外,当运行一个耗时较长的训练过程时,最佳的做法是定期保存中间结果, 以确保在服务器电源被不小心断掉时,我们不会损失几天的计算结果。 因此,现在是时候学习如何加载和存储权重向量和整个模型了。

1. 加载和保存张量

对于单个张量,我们可以直接调用loadsave函数分别读写它们。 这两个函数都要求我们提供一个名称,save要求将要保存的变量作为输入。

In [1]:

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F
​
x = torch.arange(4)
torch.save(x, 'x-file')  # 在当前目录下,新建一个名为'x-file'的文件,把数据(权重和模型)存下来

我们现在可以将存储在文件中的数据读回内存。

In [2]:

python 复制代码
x2 = torch.load('x-file') # 将存储在当前目录下'x-file'文件中的数据(权重和模型)读(load)回内存

x2
复制代码
Out[2]:
复制代码
tensor([0, 1, 2, 3])

我们可以[存储一个张量列表,然后把它们读回内存。]

In [3]:

python 复制代码
y = torch.zeros(4)

torch.save([x, y],'x-files')  # 可以存(save)一个列表(list)
x2, y2 = torch.load('x-files')
(x2, y2)
复制代码
Out[3]:
复制代码
(tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.]))

我们甚至可以(写入或读取从字符串映射到张量的字典)。 当我们要读取或写入模型中的所有权重时,这很方便。

In [4]:

python 复制代码
mydict = {'x': x, 'y': y}

torch.save(mydict, 'mydict')  # 可以存(save)一个字典(dict)
mydict2 = torch.load('mydict')
mydict2
复制代码
Out[4]:
复制代码
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}

2. 加载和保存模型参数

保存单个权重向量(或其他张量)确实有用, 但是如果我们想保存整个模型,并在以后加载它们, 单独保存每个向量则会变得很麻烦。 毕竟,我们可能有数百个参数散布在各处。 因此,深度学习框架提供了内置函数来保存和加载整个网络。 需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。 例如,如果我们有一个3层多层感知机,我们需要单独指定架构。 因为模型本身可以包含任意代码,所以模型本身难以序列化。 因此,为了恢复模型,我们需要用代码生成架构, 然后从磁盘加载参数。 让我们从熟悉的多层感知机开始尝试一下。

In [5]:

python 复制代码
class MLP(nn.Module):

    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)
​
    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))
​
net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)
复制代码

接下来,我们[将模型的参数存储在一个叫做"mlp.params"的文件中。]

In [6]:

python 复制代码
torch.save(net.state_dict(), 'mlp.params') # 用state_dict()得到所有参数(parameters)的、字符串到参数的映射

为了恢复模型,我们[实例化了原始多层感知机模型的一个备份。 ] 这里我们不需要随机初始化模型参数,而是(直接读取文件中存储的参数。)

In [7]:

python 复制代码
clone = MLP() # 想要在别的地方用这些参数,不仅要带走参数'mlp.params',还要带走MLP的模型定义MLP()

# clone = MLP()里的参数已经被随机初始化了
clone.load_state_dict(torch.load('mlp.params'))  # 调用load_state_dict()复写(over write)掉上面初始化的参数
clone.eval()  # eval()将模型设为评估模式,返回self(就是模型本身),这里用来返回模型,看看参数写入是否成功
复制代码
Out[7]:
复制代码
MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

由于两个实例具有相同的模型参数,在输入相同的X时, 两个实例的计算结果应该相同。 让我们来验证一下。

In [8]:

python 复制代码
Y_clone = clone(X)

Y_clone == Y  # 和clone之前的模型net = MLP()参数比较一下,是完全相等的,说明参数写入成功
复制代码
Out[8]:
复制代码
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])

3. 小结

  • saveload函数可用于张量对象的文件读写。
  • 我们可以通过参数字典保存和加载网络的全部参数。
  • 保存架构必须在代码中完成,而不是在参数中完成。
相关推荐
一道微光9 分钟前
Mac的M2芯片运行lightgbm报错,其他python包可用,x86_x64架构运行
开发语言·python·macos
普密斯科技24 分钟前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐37 分钟前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu13639 分钟前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
是娜个二叉树!1 小时前
图像处理基础 | 格式转换.rgb转.jpg 灰度图 python
开发语言·python
互联网杂货铺1 小时前
Postman接口测试:全局变量/接口关联/加密/解密
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·postman
日出等日落1 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧1 小时前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序
whaosoft-1431 小时前
w~视觉~3D~合集5
人工智能