《OpenCV 计算机视觉》—— 视频背景建模

还未写完!!!

  • 完整代码如下:

    python 复制代码
    import cv2
    
    cap = cv2.VideoCapture('test.avi')
    
    """
    getstructuringElement(shape,ksize,anchor=None)得到一个卷积核。主要用于后续的腐蚀、膨胀、开、闭等运算。
    参数:shape:设定卷积核的形状,可选如下三个参数:
                ①:MORPH_RECT(矩形卷积核)
                ②:MORPH_CROSS(十字形卷积核)
                ③:MORPH ELLIPSE(椭圆形卷积核)
        ksize:设定卷积核的大小、
        anchor:表示描点的位置:一般c=1,表示描点位于中心
    """
    
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
    
    # 创建混合高斯模型,用于背景建模
    fgbg = cv2.createBackgroundSubtractorMOG2()
    
    while (True):
        ret, frame = cap.read()     # ret:True表示正常读取到图像,frame:从视频中获取当前一帧图片
        cv2.imshow('frame', frame)
        fgmask = fgbg.apply(frame)  # 视频处理
        cv2.imshow('fgmask', fgmask)
        fgmask_new = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)   # 开运算去噪点,先腐蚀后膨胀。
        cv2.imshow('fgmask_new', fgmask_new)
        # 寻找视频中行走人的轮廓
        _, contours, h = cv2.findContours(fgmask_new, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
        for c in contours:
            # 计算各轮廓的周长
            perimeter = cv2.arcLength(c, True)
            if perimeter > 188:  # 找到人的矩形框
                x, y, w, h = cv2.boundingRect(c)
                # 画出这个短形
                fgmask_new_rect = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
    
        cv2.imshow('fgmask_new_rect', fgmask_new_rect)
        k = cv2.waitKey(60)
        if k == 27:
            break
  • 结果如下:

相关推荐
WoY20203 小时前
opencv-python在ubuntu系统中缺少依赖
python·opencv·ubuntu
棒棒的皮皮4 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
TheLegendMe9 小时前
AI infra5个月跳槽计划
opencv
EasyCVR10 小时前
做融合通信项目总卡壳?EasyCVR如何破解视频项目困局?
音视频
Jerryhut12 小时前
opencv总结9——答题卡识别
人工智能·opencv·计算机视觉
zl_vslam13 小时前
SLAM中的非线性优-3D图优化之地平面约束(十四)
算法·计算机视觉·平面·3d
bubiyoushang88814 小时前
MATLAB空间域图像增强技术详解与实现
图像处理·计算机视觉·matlab
【ql君】qlexcel14 小时前
机器视觉软件介绍:opencv、halcon、康耐视visionpro、海康visionmaster
人工智能·opencv·计算机视觉·halcon·visionmaster·visionpro
CoovallyAIHub14 小时前
当特斯拉FSD在高速狂奔时,SCCA-YOLO如何看清偏远乡村道路的复杂场景?
深度学习·算法·计算机视觉
CoovallyAIHub14 小时前
工业质检只能依赖缺陷样本?PatchCore给出“冷启动”答案
深度学习·算法·计算机视觉