《OpenCV 计算机视觉》—— 视频背景建模

还未写完!!!

  • 完整代码如下:

    python 复制代码
    import cv2
    
    cap = cv2.VideoCapture('test.avi')
    
    """
    getstructuringElement(shape,ksize,anchor=None)得到一个卷积核。主要用于后续的腐蚀、膨胀、开、闭等运算。
    参数:shape:设定卷积核的形状,可选如下三个参数:
                ①:MORPH_RECT(矩形卷积核)
                ②:MORPH_CROSS(十字形卷积核)
                ③:MORPH ELLIPSE(椭圆形卷积核)
        ksize:设定卷积核的大小、
        anchor:表示描点的位置:一般c=1,表示描点位于中心
    """
    
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
    
    # 创建混合高斯模型,用于背景建模
    fgbg = cv2.createBackgroundSubtractorMOG2()
    
    while (True):
        ret, frame = cap.read()     # ret:True表示正常读取到图像,frame:从视频中获取当前一帧图片
        cv2.imshow('frame', frame)
        fgmask = fgbg.apply(frame)  # 视频处理
        cv2.imshow('fgmask', fgmask)
        fgmask_new = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)   # 开运算去噪点,先腐蚀后膨胀。
        cv2.imshow('fgmask_new', fgmask_new)
        # 寻找视频中行走人的轮廓
        _, contours, h = cv2.findContours(fgmask_new, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
        for c in contours:
            # 计算各轮廓的周长
            perimeter = cv2.arcLength(c, True)
            if perimeter > 188:  # 找到人的矩形框
                x, y, w, h = cv2.boundingRect(c)
                # 画出这个短形
                fgmask_new_rect = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
    
        cv2.imshow('fgmask_new_rect', fgmask_new_rect)
        k = cv2.waitKey(60)
        if k == 27:
            break
  • 结果如下:

相关推荐
CoovallyAIHub11 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub11 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
xiaohouzi1122332 天前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
小关会打代码2 天前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
kaixin_啊啊2 天前
突破限制:Melody远程音频管理新体验
音视频
天天进步20152 天前
用Python打造专业级老照片修复工具:让时光倒流的数字魔法
人工智能·计算机视觉
荼蘼2 天前
答题卡识别改分项目
人工智能·opencv·计算机视觉
ai产品老杨2 天前
解锁仓储智能调度、运输路径优化、数据实时追踪,全功能降本提效的智慧物流开源了
javascript·人工智能·开源·音视频·能源
MThinker3 天前
02-Media-8-uvc_with_csc.py 使用硬件解码的USB摄像头(UVC)捕获视频并显示的程序
音视频·智能硬件·micropython·canmv·k230
IT古董3 天前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn