《OpenCV 计算机视觉》—— 视频背景建模

还未写完!!!

  • 完整代码如下:

    python 复制代码
    import cv2
    
    cap = cv2.VideoCapture('test.avi')
    
    """
    getstructuringElement(shape,ksize,anchor=None)得到一个卷积核。主要用于后续的腐蚀、膨胀、开、闭等运算。
    参数:shape:设定卷积核的形状,可选如下三个参数:
                ①:MORPH_RECT(矩形卷积核)
                ②:MORPH_CROSS(十字形卷积核)
                ③:MORPH ELLIPSE(椭圆形卷积核)
        ksize:设定卷积核的大小、
        anchor:表示描点的位置:一般c=1,表示描点位于中心
    """
    
    kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
    
    # 创建混合高斯模型,用于背景建模
    fgbg = cv2.createBackgroundSubtractorMOG2()
    
    while (True):
        ret, frame = cap.read()     # ret:True表示正常读取到图像,frame:从视频中获取当前一帧图片
        cv2.imshow('frame', frame)
        fgmask = fgbg.apply(frame)  # 视频处理
        cv2.imshow('fgmask', fgmask)
        fgmask_new = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)   # 开运算去噪点,先腐蚀后膨胀。
        cv2.imshow('fgmask_new', fgmask_new)
        # 寻找视频中行走人的轮廓
        _, contours, h = cv2.findContours(fgmask_new, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
        for c in contours:
            # 计算各轮廓的周长
            perimeter = cv2.arcLength(c, True)
            if perimeter > 188:  # 找到人的矩形框
                x, y, w, h = cv2.boundingRect(c)
                # 画出这个短形
                fgmask_new_rect = cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
    
        cv2.imshow('fgmask_new_rect', fgmask_new_rect)
        k = cv2.waitKey(60)
        if k == 27:
            break
  • 结果如下:

相关推荐
一行注释也不写1 小时前
【卷积层和池化层在CNN中的作用】
深度学习·计算机视觉·cnn
曼巴UE51 小时前
UE Sequencer,MediaPlay的使用经验总结
ue5·音视频·ue
2501_936146041 小时前
目标检测论文解读复现之六基于RetinaNet的考拉检测方法
人工智能·目标检测·计算机视觉
敢敢のwings3 小时前
NeoVerse:用百万单目视频打开4D世界模型的大门
音视频
应用市场3 小时前
Intel Core Ultra 9做目标检测够用吗?CPU+GPU+NPU三路并发实测
人工智能·目标检测·计算机视觉
一招定胜负4 小时前
基于OpenCV的银行卡号识别项目实战
人工智能·opencv·计算机视觉
gorgeous(๑>؂<๑)5 小时前
【中国科学院光电研究所-张建林组-AAAI26】追踪不稳定目标:基于外观引导的运动建模在无人机拍摄视频中实现稳健的多目标跟踪
人工智能·机器学习·计算机视觉·目标跟踪·无人机
美狐美颜sdk5 小时前
企业级直播美颜SDK与动态贴纸SDK开发技术方案拆解与落地实践
android·人工智能·计算机视觉·第三方美颜sdk·人脸美型sdk
一招定胜负6 小时前
图像金字塔与直方图
图像处理·opencv·计算机视觉
AAD555888996 小时前
基于YOLO11的自然景观多类别目标检测系统 山脉海洋湖泊森林建筑物桥梁道路农田沙漠海滩等多种景观元素检测识别
人工智能·目标检测·计算机视觉