Maximum_Likelihood

Statistics with Prof. Liu Sept 6, 2024

Statistics has two streams: frequenties, and Bayes.

Maximum likelihood is frequenties method.

Likelihood function is powerful, which contains all information for the data. We don't need others, just this function.

Likelihood function is the joint probability of all data. Likelihood 就是data的概率。所有data的信息全在这个likelihood finction里面了!

We assume data are iid. In statistics we say iid is "random sample". It means, e.g. 每次抽球的概率一样。

That Joint probability is just the product of all P(data | parameter)

It's data's probability! Not parameters' probability.

例:两个盒子,一个有5个黑球5个白球,另一个有9个黑球1个白球。现抽4次,每次放回地抽1个球。4个都是黑球。问最可能从哪个盒子抽的。

For box1, if 4 times, P(4 black) = P(black)^4 = 0.5^4

For box2, if 4 times, P(4 black) = P(black)^4 = 0.9^4 that's why iid and we make product.

The latter probability is larger, so we choose box2.

The parameters for each box: box1, binomial, n=4, p=0.5. box2, n=4, p=0.9

例,无穷多个盒子,它们有黑球的比例是从0到1不等。抽4次,4个都是黑球。问从哪个盒子抽的。

Now the parameters, n=4, but don't know p. Want to know p, once know p, we then know which box.

**We still choose the box with the highest p. We choose the max P(data given p) ie P(data given box). **

But what is the probability that box2 is what I have done? What is the probability for box1?

But these numbers are not the probabilities for the two boxes! It's more intuitive to make decisions based on their probabilities, such as the prob of rain 40% and not rain 60%.

It has logics. We are choosing the parameter which can make the data to be most likely to stand.

Likelihood is just the probability, the probability of data. 0 to 1.

**应用到科学方法论,We can measure the distance of a theory to the real world data, ie, to examine a theory is good or bad, using likelihood. **


Statistics do inference: estimation and prediction.

Estimation has two categories: 1. Assume we know the population distribution, we just estimate its parameters. 2. We don't even know the population distribution.

After that, if we use our model to fit new data, then it's prediction.

**Prediction error is larger than estimation error. ** Estimatiin error is just RSS, the sum of square residuals. But for prediction, a new dataset will introduce new noise, and plus the model's original RSS.


In logistics regression, and linear regression, and linear discriminate analysis, the conditional class probabilities sum up to 1, and thus is posterior probability P(parameter given data). Just compare them directly. We can use Bayes optimal classifier. It's not related to likelihood.

相关推荐
EmbedLinX3 小时前
嵌入式Linux之U-Boot
linux·服务器·笔记·学习
今儿敲了吗6 小时前
23| 画展
c++·笔记·学习·算法
山岚的运维笔记8 小时前
SQL Server笔记 -- 第68章:内存中 OLTP(Hekaton)
数据库·笔记·sql·microsoft·sqlserver
winfreedoms9 小时前
ROS2机械臂——黑马程序员ROS2课程上课笔记(3)
arm开发·笔记
山岚的运维笔记9 小时前
SQL Server笔记 -- 第67章:数据库邮件(DBMAIL)
数据库·笔记·sql·microsoft·sqlserver
菩提小狗10 小时前
第15天:信息打点-主机架构&蜜罐识别&WAF识别&端口扫描&协议识别&服务安全_笔记|小迪安全2023-2024|web安全|渗透测试|
笔记·安全·架构
田里的水稻11 小时前
FA_规划和控制(PC)-快速探索随机树(RRT)
人工智能·算法·数学建模·机器人·自动驾驶
一个人旅程~12 小时前
windows自带的文本编辑软件notpad太差怎么办?
经验分享·笔记·电脑
田里的水稻12 小时前
LPC_激光点云定位(LSLAM)-(IPC)
人工智能·算法·数学建模·机器人·自动驾驶
Hello_Embed12 小时前
Modbus 传感器开发:从寄存器规划到点表设计
笔记·stm32·单片机·学习·modbus