【4.6】图搜索算法-DFS和BFS解合并二叉树

一、题目

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。你需要将他们合并为一个新的二叉树。合并的规则是 如果两个节点重叠,那么将他们的 值相加作为节点合并后的新值,否则不为 NUL L 的节点将直接作为新二叉树的节点 。

示例 1:

合并后的树如下


注意 : 合并必须从两个树的根节点开始。

二、解题思路

DFS思路:

合并两棵二叉树时,可能会遇到以下三种情况:

  1. 两个节点都为空:在这种情况下,不需要进行合并操作。

  2. 一个节点为空,另一个节点不为空:合并的结果将是不为空的那个节点。

  3. 两个节点都不为空:合并后的节点值将是这两个节点值的和。

我们一起画图看看

BFS思路:
除了 DFS 我们还可以使用 BFS ,就是一层一层的遍历,合并的原理和上面一样

这里描述的是将第二棵树合并到第一棵树上的过程:

  • 如果第一棵树的左子节点为空,直接将第二棵树的左子节点赋值给第一棵树的左子节点。

  • 如果第一棵树的左子节点不为空,而第二棵树的左子节点为空,直接返回第一棵树的左子节点。

  • 如果第一棵树的左子节点和第二棵树的左子节点都不为空,直接将它们的值相加。
    右子树和上面原理一样。

三、代码实现

DFS代码:

cpp 复制代码
#include <iostream>

using namespace std;

// 定义二叉树节点结构
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
    // 如果两个节点都为空,直接返回空
    if (t1 == nullptr && t2 == nullptr)
        return nullptr;
    // 如果t1节点为空,就返回t2节点
    if (t1 == nullptr)
        return t2;
    // 如果t2节点为空,就返回t1节点
    if (t2 == nullptr)
        return t1;
    // 走到这一步,说明两个节点都不为空,然后需要把这两个节点
    // 合并成一个新的节点
    TreeNode* newNode = new TreeNode(t1->val + t2->val);
    // 当前节点t1和t2合并完之后,还要继续合并t1和t2的子节点
    newNode->left = mergeTrees(t1->left, t2->left);
    newNode->right = mergeTrees(t1->right, t2->right);
    return newNode;
}

// 辅助函数:前序遍历打印二叉树
void preOrderPrint(TreeNode* root) {
    if (root == nullptr)
        return;
    cout << root->val << " ";
    preOrderPrint(root->left);
    preOrderPrint(root->right);
}

int main() {
    // 示例二叉树1
    TreeNode* t1 = new TreeNode(1);
    t1->left = new TreeNode(3);
    t1->right = new TreeNode(2);
    t1->left->left = new TreeNode(5);

    // 示例二叉树2
    TreeNode* t2 = new TreeNode(2);
    t2->left = new TreeNode(1);
    t2->right = new TreeNode(3);
    t2->left->right = new TreeNode(4);
    t2->right->right = new TreeNode(7);

    // 合并两棵二叉树
    TreeNode* mergedTree = mergeTrees(t1, t2);

    // 打印合并后的二叉树
    cout << "合并后的二叉树前序遍历结果: ";
    preOrderPrint(mergedTree);
    cout << endl;

    return 0;
}

BFS代码:

cpp 复制代码
#include <iostream>
#include <queue>

using namespace std;

// 定义二叉树节点结构
struct TreeNode {
    int val;
    TreeNode* left;
    TreeNode* right;
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};

// 把第2棵树合并到第1棵树上
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
    // 如果t1节点为空,就返回t2节点
    if (t1 == nullptr)
        return t2;
    // 如果t2节点为空,就返回t1节点
    if (t2 == nullptr)
        return t1;

    // 队列中两棵树的节点同时存在
    queue<TreeNode*> q;
    // 把这两棵树的节点同时入队
    q.push(t1);
    q.push(t2);

    while (!q.empty()) {
        // 两棵树的节点同时出队
        TreeNode* node1 = q.front();
        q.pop();
        TreeNode* node2 = q.front();
        q.pop();

        // 把这两个节点的值相加,然后合并到第1棵树的节点上
        node1->val += node2->val;

        if (node1->left == nullptr) {
            // 如果node1左子节点为空,我们直接让node2的
            // 左子结点成为node1的左子结点,
            node1->left = node2->left;
        } else {
            // 执行到这一步,说明node1的左子节点不为空,
            // 如果node2的左子节点为空就不需要合并了,
            // 只有node2的左子节点不为空的时候才需要合并
            if (node2->left != nullptr) {
                q.push(node1->left);
                q.push(node2->left);
            }
        }

        // 原理同上,上面判断的是左子节点,这里判断的是右子节点
        if (node1->right == nullptr) {
            node1->right = node2->right;
        } else {
            if (node2->right != nullptr) {
                q.push(node1->right);
                q.push(node2->right);
            }
        }
    }

    // 把第2棵树合并到第1棵树上,所以返回的是第1棵树
    return t1;
}

// 辅助函数:前序遍历打印二叉树
void preOrderPrint(TreeNode* root) {
    if (root == nullptr)
        return;
    cout << root->val << " ";
    preOrderPrint(root->left);
    preOrderPrint(root->right);
}

int main() {
    // 示例二叉树1
    TreeNode* t1 = new TreeNode(1);
    t1->left = new TreeNode(3);
    t1->right = new TreeNode(2);
    t1->left->left = new TreeNode(5);

    // 示例二叉树2
    TreeNode* t2 = new TreeNode(2);
    t2->left = new TreeNode(1);
    t2->right = new TreeNode(3);
    t2->left->right = new TreeNode(4);
    t2->right->right = new TreeNode(7);

    // 合并两棵二叉树
    TreeNode* mergedTree = mergeTrees(t1, t2);

    // 打印合并后的二叉树
    cout << "合并后的二叉树前序遍历结果: ";
    preOrderPrint(mergedTree);
    cout << endl;

    return 0;
}
相关推荐
小猿_0024 分钟前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
肖田变强不变秃29 分钟前
C++实现矩阵Matrix类 实现基本运算
开发语言·c++·matlab·矩阵·有限元·ansys
熊文豪2 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
雪靡5 小时前
正确获得Windows版本的姿势
c++·windows
siy23335 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
可涵不会debug5 小时前
【C++】在线五子棋对战项目网页版
linux·服务器·网络·c++·git
AI+程序员在路上5 小时前
C#调用c++dll的两种方法(静态方法和动态方法)
c++·microsoft·c#
吴秋霖5 小时前
最新百应abogus纯算还原流程分析
算法·abogus
mit6.8246 小时前
What is Json?
c++·学习·json
灶龙6 小时前
浅谈 PID 控制算法
c++·算法