Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制

尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。

近日,韩国亚洲大学(Ajou University)Taewi Kim, Insic Hong, Sunghoon Im, Je-sung Koh,Seungyong Han & Daeshik Kang等,韩国即时通信Kakao公司的Seungeun Rho等,在Nature Machine Intelligence上发文,利用模拟这些生物系统的机器人实验,证实了机翼应变提供了无人机姿态角以及风向和风速的关键信息。

研发了可应用于扑翼无人机的"感知飞行"控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。

目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。

在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。从阵风阻力到自主飞行机器人的风力辅助飞行,这种环境变化的适应性,将有利于各种应用。

预计这种扑翼无人机控制技术,可用于间谍机器人、勘探和救灾机器人等自行感知风向并飞向目标位置的机器人。

Wing-strain-based flight control of flapping-wing drones through reinforcement learning.

基于强化学习的扑翼无人机机翼应变飞行控制

图1: 基于感知飞行的飞行控制策略。

图2:从机翼应变数据中,提取气动特征。

图3: 通过感知风向和风速进行位置控制,风向和风速因位置而异。

图4 在两个自由度环境中的的强化学习reinforcement learning,RL。

图5: 具有感知飞行系统的扑翼无人机位置控制。

相关推荐
timmy-uav1 天前
MissionPlanner架构梳理之(八)- MAVLink 命令
系统架构·无人机·开源地面站·missionplanner
Coovally AI模型快速验证1 天前
3D目标跟踪重磅突破!TrackAny3D实现「类别无关」统一建模,多项SOTA达成!
人工智能·yolo·机器学习·3d·目标跟踪·无人机·cocos2d
@高蕊2 天前
光伏项目无人机踏勘--如何使用无人机自动航线规划APP
arcgis·无人机
Coovally AI模型快速验证2 天前
无人机小目标检测新SOTA:MASF-YOLO重磅开源,多模块协同助力精度飞跃
人工智能·yolo·目标检测·机器学习·计算机视觉·无人机
云卓SKYDROID2 天前
无人机报警器8G信号技术解析
人工智能·无人机·航电系统·高科技·云卓科技
Cprsensors3 天前
汽车“电子秤”的核心:车辆称重传感器工作原理浅析
人工智能·科技·机器人·自动化·汽车·无人机
小猫挖掘机(绝版)3 天前
Ubuntu20.04安装ROS Noetic
linux·c++·ubuntu·无人机
无线图像传输研究探索4 天前
如何将大疆无人机拍摄到的图像回传到应急指挥中心大屏?5G单兵图传轻松解决图传问题|伟博视讯
5g·无人机·无线图传·单兵图传·无人机图传
a1111111111ss4 天前
基于 YOLOv11n 的无人机航拍小目标检测算法学习
yolo·目标检测·无人机
许商4 天前
【无人机】1.编译betaflight和cleanflight的固件
无人机