Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制

尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。

近日,韩国亚洲大学(Ajou University)Taewi Kim, Insic Hong, Sunghoon Im, Je-sung Koh,Seungyong Han & Daeshik Kang等,韩国即时通信Kakao公司的Seungeun Rho等,在Nature Machine Intelligence上发文,利用模拟这些生物系统的机器人实验,证实了机翼应变提供了无人机姿态角以及风向和风速的关键信息。

研发了可应用于扑翼无人机的"感知飞行"控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。

目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。

在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。从阵风阻力到自主飞行机器人的风力辅助飞行,这种环境变化的适应性,将有利于各种应用。

预计这种扑翼无人机控制技术,可用于间谍机器人、勘探和救灾机器人等自行感知风向并飞向目标位置的机器人。

Wing-strain-based flight control of flapping-wing drones through reinforcement learning.

基于强化学习的扑翼无人机机翼应变飞行控制

图1: 基于感知飞行的飞行控制策略。

图2:从机翼应变数据中,提取气动特征。

图3: 通过感知风向和风速进行位置控制,风向和风速因位置而异。

图4 在两个自由度环境中的的强化学习reinforcement learning,RL。

图5: 具有感知飞行系统的扑翼无人机位置控制。

相关推荐
电鱼智能的电小鱼2 小时前
基于 EFISH-SBC-RK3588 的无人机通信云端数据处理模块方案‌
linux·网络·人工智能·嵌入式硬件·无人机·边缘计算
月阳羊2 小时前
【无人机】无人机遥控器设置与校准,飞行模式的选择,无线电控制 (RC) 设置
无人机
珈和info13 小时前
珈和科技助力“农险提效200%”!“遥感+”技术创新融合省级示范项目荣登《湖北卫视》!
大数据·科技·无人机·智慧农业
电鱼智能的电小鱼21 小时前
SAIL-RK3588协作机器人运动控制器技术方案
linux·嵌入式硬件·数码相机·机器人·无人机·边缘计算
月阳羊1 天前
【无人机】无人机光流模块Optical Flow设置(三),光流测距一体传感器的配置。凌启科技的光流测距一体模块的测试。
无人机
新一线电子测试测量技术说1 天前
国产仪器进化论:“鲁般号”基于无人机的天线测试系统
无人机
moonsims1 天前
基于大疆行业无人机的特色解决方案-无线通信篇:基于蜂窝以及自组网MESH的无线通信C2链路
无人机
月阳羊2 天前
【无人机】无人机位置估计出现偏差的原因分析
无人机
月阳羊2 天前
【无人机】问题分析。查看电机转速时,四个电机转速不一致,QGC中检测到电机转速不均衡
无人机
月阳羊3 天前
【无人机】使用扩展卡尔曼滤波 (EKF) 算法来处理传感器测量,各传感器的参数设置,高度数据融合、不同传感器融合模式
无人机