Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制

尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。

近日,韩国亚洲大学(Ajou University)Taewi Kim, Insic Hong, Sunghoon Im, Je-sung Koh,Seungyong Han & Daeshik Kang等,韩国即时通信Kakao公司的Seungeun Rho等,在Nature Machine Intelligence上发文,利用模拟这些生物系统的机器人实验,证实了机翼应变提供了无人机姿态角以及风向和风速的关键信息。

研发了可应用于扑翼无人机的"感知飞行"控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。

目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。

在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。从阵风阻力到自主飞行机器人的风力辅助飞行,这种环境变化的适应性,将有利于各种应用。

预计这种扑翼无人机控制技术,可用于间谍机器人、勘探和救灾机器人等自行感知风向并飞向目标位置的机器人。

Wing-strain-based flight control of flapping-wing drones through reinforcement learning.

基于强化学习的扑翼无人机机翼应变飞行控制

图1: 基于感知飞行的飞行控制策略。

图2:从机翼应变数据中,提取气动特征。

图3: 通过感知风向和风速进行位置控制,风向和风速因位置而异。

图4 在两个自由度环境中的的强化学习reinforcement learning,RL。

图5: 具有感知飞行系统的扑翼无人机位置控制。

相关推荐
风暴智能16 小时前
获取相机图像(ROS2)
linux·机器人·无人机
视觉语言导航1 天前
兼顾长、短视频任务的无人机具身理解!AirVista-II:面向动态场景语义理解的无人机具身智能体系统
人工智能·无人机·具身智能
猿大师播放器2 天前
网页Web端无人机直播RTSP视频流,无需服务器转码,延迟300毫秒
无人机·h.265·rtsp
调了个寂寞3 天前
无人机俯视风光摄影Lr调色预设,手机滤镜PS+Lightroom预设下载!
无人机·lr调色·人像预设·摄影后期·lr预设·文艺预设
UAV_ckesc3 天前
无人机动力系统全解析:核心组件、工作原理与实用指南
无人机·多旋翼无人机·无人机电调·无人机动力·南昌长空科技·无人机配件
风暴智能3 天前
问题处理——在ROS2(humble)+Gazebo+rqt下,无法显示仿真无人机的相机图像
linux·无人机
云卓SKYDROID3 天前
无人机数据处理与特征提取技术分析!
人工智能·科技·无人机·科普·云卓科技
合新通信 | 让光不负所托3 天前
【合新通信】无人机天线拉远RFOF(射频光纤传输)解决方案
无人机
视觉语言导航4 天前
昆士兰科技大学无人机自主导航探索新框架!UAVNav:GNSS拒止与视觉受限环境中的无人机导航与目标检测
人工智能·无人机·具身智能
视觉语言导航4 天前
武汉大学无人机视角下的多目标指代理解新基准!RefDrone:无人机场景指代表达理解数据集
人工智能·深度学习·无人机·具身智能