Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制

尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。

近日,韩国亚洲大学(Ajou University)Taewi Kim, Insic Hong, Sunghoon Im, Je-sung Koh,Seungyong Han & Daeshik Kang等,韩国即时通信Kakao公司的Seungeun Rho等,在Nature Machine Intelligence上发文,利用模拟这些生物系统的机器人实验,证实了机翼应变提供了无人机姿态角以及风向和风速的关键信息。

研发了可应用于扑翼无人机的"感知飞行"控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。

目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。

在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。从阵风阻力到自主飞行机器人的风力辅助飞行,这种环境变化的适应性,将有利于各种应用。

预计这种扑翼无人机控制技术,可用于间谍机器人、勘探和救灾机器人等自行感知风向并飞向目标位置的机器人。

Wing-strain-based flight control of flapping-wing drones through reinforcement learning.

基于强化学习的扑翼无人机机翼应变飞行控制

图1: 基于感知飞行的飞行控制策略。

图2:从机翼应变数据中,提取气动特征。

图3: 通过感知风向和风速进行位置控制,风向和风速因位置而异。

图4 在两个自由度环境中的的强化学习reinforcement learning,RL。

图5: 具有感知飞行系统的扑翼无人机位置控制。

相关推荐
量子-Alex1 天前
【反无人机检测】C2FDrone:基于视觉Transformer网络的无人机间由粗到细检测
网络·transformer·无人机
Vesan,1 天前
网络通讯知识——通讯分层介绍,gRPC,RabbitMQ分层
网络·分布式·rabbitmq·无人机
中达瑞和-高光谱·多光谱2 天前
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
数码相机·目标检测·无人机
赵荏苒2 天前
无人机论文感想
无人机
Coovally AI模型快速验证2 天前
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
人工智能·神经网络·yolo·目标检测·无人机·cocos2d
思通数科多模态大模型2 天前
重构城市应急指挥布控策略 ——无人机智能视频监控的破局之道
人工智能·深度学习·安全·重构·数据挖掘·音视频·无人机
?FEEL?3 天前
无人机自主降落论文解析
无人机
天月风沙3 天前
PX4 | 无人机关闭磁力计罗盘飞行(yaw estimate error报错解决方法)
单片机·嵌入式硬件·mcu·无人机
倾斜摄影建模3 天前
乡村三维建模 | 江苏农田无人机建模案例
无人机
weixin_418007603 天前
大疆无人机的二次开发
无人机