Nature Machine Intelligence 基于强化学习的扑翼无人机机翼应变飞行控制

尽管无人机技术发展迅速,但复制生物飞行的动态控制和风力感应能力,仍然遥不可及。生物学研究表明,昆虫翅膀上有机械感受器,即钟形感受器campaniform sensilla,探测飞行敏捷性至关重要的复杂气动载荷。

近日,韩国亚洲大学(Ajou University)Taewi Kim, Insic Hong, Sunghoon Im, Je-sung Koh,Seungyong Han & Daeshik Kang等,韩国即时通信Kakao公司的Seungeun Rho等,在Nature Machine Intelligence上发文,利用模拟这些生物系统的机器人实验,证实了机翼应变提供了无人机姿态角以及风向和风速的关键信息。

研发了可应用于扑翼无人机的"感知飞行"控制技术,利用施加在扑翼无人机机翼上的气动力,推导重要的飞行数据,如姿态和气流,而无需加速计和陀螺传感器。

目前工作包括五个关键实验:用于提供状态信息的机翼应变传感器系统初步验证,在风变化的单自由度运动环境中的控制技术,在重力姿态调整的两自由度运动环境中的控制技术,在有风条件下的位置控制测试,以及在无风条件下,仅使用机翼应变传感器的精确飞行路径操纵的演示。

在强化学习驱动的飞行控制器帮助下,已经成功地演示了仅使用机翼应变传感器,在各种环境中控制扑翼无人机。从阵风阻力到自主飞行机器人的风力辅助飞行,这种环境变化的适应性,将有利于各种应用。

预计这种扑翼无人机控制技术,可用于间谍机器人、勘探和救灾机器人等自行感知风向并飞向目标位置的机器人。

Wing-strain-based flight control of flapping-wing drones through reinforcement learning.

基于强化学习的扑翼无人机机翼应变飞行控制

图1: 基于感知飞行的飞行控制策略。

图2:从机翼应变数据中,提取气动特征。

图3: 通过感知风向和风速进行位置控制,风向和风速因位置而异。

图4 在两个自由度环境中的的强化学习reinforcement learning,RL。

图5: 具有感知飞行系统的扑翼无人机位置控制。

相关推荐
DX_水位流量监测17 小时前
无人机测流之雷达流速仪监测技术分析
大数据·网络·人工智能·数据分析·自动化·无人机
思绪漂移19 小时前
算法调度:场景分析、策略与工程化技术难点——无人机全量感知 vs 机器人定点路由
机器人·无人机·算法调度
moonsims2 天前
波士顿机械狗Spot利用可视化基础模型将其置于上下文中实现基于3D空间语义认知的路径规划
无人机
测绘小沫-北京云升智维2 天前
大疆御Air2故障处理全指南
经验分享·无人机
Evand J2 天前
【MATLAB代码介绍】【空地协同】UAV辅助的UGV协同定位,无人机辅助地面无人车定位,带滤波,MATLAB
开发语言·matlab·无人机·协同·路径·多机器人
长沙京卓2 天前
无人机私有化平台(真实需求)
无人机
Teacher.chenchong2 天前
从传感器到生理机制:近地面无人机植被定量遥感与生理参数反演——涵盖辐射定标、几何处理、辐射传输模型与关键参数反演
无人机
青春不败 177-3266-05202 天前
近地面无人机植被定量遥感与生理参数反演实践技术应用
无人机·生态学·植被遥感·遥感
AI浩2 天前
MFDA-YOLO:一种用于无人机小目标检测的多尺度特征融合与动态对齐网络
yolo·目标检测·无人机
云卓SKYDROID2 天前
无人机抗干扰技术解析与应用
无人机·高科技·云卓科技·电机模块