力扣题解1870

这道题是一个典型的算法题,涉及计算在限制的时间内列车速度的最小值。这是一个优化问题,通常需要使用二分查找来求解。

题目描述(中等)

准时到达的列车最小时速

给你一个浮点数 hour ,表示你到达办公室可用的总通勤时间。要到达办公室,你必须按给定次序乘坐 n 趟列车。另给你一个长度为 n 的整数数组 dist ,其中 dist[i] 表示第 i 趟列车的行驶距离(单位是千米)。

每趟列车均只能在整点发车,所以你可能需要在两趟列车之间等待一段时间。

例如,第 1 趟列车需要 1.5 小时,那你必须再等待 0.5 小时,搭乘在第 2 小时发车的第 2 趟列车。

返回能满足你准时到达办公室所要求全部列车的 最小正整数 时速(单位:千米每小时),如果无法准时到达,则返回 -1 。

生成的测试用例保证答案不超过 107 ,且 hour 的 小数点后最多存在两位数字 。


题目大意:

  • 你需要乘坐 n 趟列车,并且需要按给定的顺序乘坐。
  • 每趟列车都要在整点发车,所以可能需要在两趟列车之间等待。
  • 你可以给定一个浮点数 hour,作为你所能使用的最大通勤时间。
  • 需要找到一个最小的正整数速度,使得总用时不超过给定的 hour,无法达到则返回 -1。

解题思路:

  1. 理解等待时间:由于列车只能整点发车,即使乘车时间不满整数小时,也需要等到下一个整数小时。
  2. 计算用时
    • 对于前 n-1 趟列车,必须在整点发车。其总时间为这些列车每趟到达所需时间的上限。
    • 最后一趟列车则直接计算实际用时,因为它不需要等下一个整点发车。
  3. 二分查找
    • 初始最小速度设为1,最大速度设定为题目保证的上限(或使用一个足够大的值)。
    • 使用二分查找来找到使得总乘机时间不超过 hour 的最小整数速度。
    • 对于每个速度,通过计算每趟列车旅游所消耗的时间来判断该速度是否符合条件。

C和C++代码实现:

C++代码

cpp 复制代码
bool canReachOnTime(const vector<int>& dist, double hour, int speed) {
    double totalTime = 0.0;
    int n = dist.size();
    
    for (int i = 0; i < n; ++i) {
        double timeNeeded = static_cast<double>(dist[i]) / speed;
        if (i == n - 1) {
            totalTime += timeNeeded; // Last train, no need to round up
        } else {
            totalTime += ceil(timeNeeded); // Round up for all but the last train
        }
    }
    
    return totalTime <= hour;
}

int minSpeedOnTime(const vector<int>& dist, double hour) {
    int left = 1, right = 1e7, minSpeed = -1;
    
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (canReachOnTime(dist, hour, mid)) {
            minSpeed = mid;
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }
    
    return minSpeed;
}

C代码

由于C语言的math.h库并没有很好的支持浮点的ceil函数,你可能需要手动编写这个功能。

c 复制代码
#include <stdio.h>
#include <math.h>

int canReachOnTime(int* dist, int distSize, double hour, int speed) {
    double totalTime = 0.0;
    
    for (int i = 0; i < distSize; ++i) {
        double timeNeeded = (double)dist[i] / speed;
        if (i == distSize - 1) {
            totalTime += timeNeeded; // Last train, no need to round up
        } else {
            totalTime += ceil(timeNeeded); // Round up for all but the last train
        }
    }
    
    return totalTime <= hour;
}

int minSpeedOnTime(int* dist, int distSize, double hour) {
    int left = 1, right = 10000000, minSpeed = -1;
    
    while (left <= right) {
        int mid = left + (right - left) / 2;
        if (canReachOnTime(dist, distSize, hour, mid)) {
            minSpeed = mid;
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }
    
    return minSpeed;
}

int main() {
    int dist[] = {1, 3, 2};
    int n = sizeof(dist) / sizeof(dist[0]);
    double hour = 2.7;
    printf("Minimum speed required: %d\n", minSpeedOnTime(dist, n, hour));
    return 0;
}

算法和代码分析:

  • canReachOnTime函数 :这个辅助函数判断给定的速度下能否在限制时间内到达。它遍历所有列车计算总用时。对倒数第二趟列车,使用ceil将乘车时间圆整至下一整数以模拟等待时间的影响。
  • 二分查找:利用二分查找来优化最小的速度搜索,将搜索空间从1到10000000,每次通过中值检验是否满足时间条件,不符合则增加速度范围,符合则记录并尝试更小速度。
  • 复杂度:二分查找的复杂度为O(log M),其中M为速度的搜索范围,判断能否到达的复杂度为O(N),因此总复杂度为O(N log M)。
相关推荐
HarmonLTS2 分钟前
Python人工智能深度开发:技术体系、核心实践与工程化落地
开发语言·人工智能·python·算法
a程序小傲14 分钟前
京东Java面试被问:RPC调用的熔断降级和自适应限流
java·开发语言·算法·面试·职场和发展·rpc·边缘计算
一分之二~14 分钟前
二叉树--层序遍历(迭代和递归)
数据结构·c++·算法·leetcode
zl_vslam30 分钟前
SLAM中的非线性优-3D图优化之绝对位姿SE3约束右扰动(十七)
人工智能·算法·计算机视觉·3d
Cestb0n36 分钟前
某果app 加密校验算法逆向分析
python·算法·逆向安全
机器学习之心1 小时前
MATLAB基于近红外光谱检测的菠萝含水率预测(多种预处理+PLS)
人工智能·算法·matlab·近红外光谱检测
程序员-King.1 小时前
day166—递归—多边形三角剖分的最低得分(LeetCode-1039)
算法·leetcode·深度优先·动态规划·递归
夏鹏今天学习了吗1 小时前
【LeetCode热题100(94/100)】下一个排列
算法·leetcode·职场和发展
AI科技星1 小时前
光的几何起源:从螺旋时空到量子现象的完全统一
开发语言·人工智能·线性代数·算法·机器学习
q_35488851532 小时前
机器学习:Python地铁人流量数据分析与预测系统 基于python地铁数据分析系统+可视化 时间序列预测算法 ✅
大数据·人工智能·python·算法·机器学习·信息可视化·数据分析