CSP-S 2022 T1假期计划
先思考暴力做法,题目需要找到四个不相同的景点,那我们就枚举这四个景点,判断它们之间的距离是否符合条件,条件是任意两个点之间的距离是否大于 k k k,所以我们需要求出任意两点之间的距离。常用的 D i j k s t r a Dijkstra Dijkstra和 S P F A SPFA SPFA都是单源最短路,也就是只能求一个点到其它点的距离,而 F l o y e d Floyed Floyed可以求任意两个点之间的最短路,虽然其时间复杂度是 O ( n 3 ) O(n^3) O(n3),但对于这个做法的数据范围是可以接受的。这个做法的时间复杂度为 O ( n 4 ) O(n^4) O(n4)(枚举四个景点),在 k k k较小的情况下可以通过(因为 k k k会影响到循环退出),可以拿到 55 55 55分。
cpp
#include <bits/stdc++.h>
#define A 2510
using namespace std;
typedef long long ll;
int n, m, kk, x, y, dis[A][A];
ll a[A], ans;
int main(int argc, char const *argv[]) {
scanf("%d%d%d", &n, &m, &kk); kk++;
for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);
memset(dis, 0x3f, sizeof dis);
for (int i = 1; i <= n; i++) dis[i][i] = 0;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
dis[x][y] = 1; dis[y][x] = 1;
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
for (int i = 2; i <= n; i++) {
if (dis[1][i] > kk) continue;
for (int j = 2; j <= n; j++) {
if (i == j) continue;
if (dis[i][j] > kk) continue;
for (int k = 2; k <= n; k++) {
if (i == k or j == k) continue;
if (dis[j][k] > kk) continue;
for (int l = 2; l <= n; l++) {
if (i == l or j == l or k == l) continue;
if (dis[k][l] > kk or dis[l][1] > kk) continue;
ans = max(ans, a[i] + a[j] + a[k] + a[l]);
}
}
}
}
printf("%lld\n", ans);
}
比较特殊的数据点是当 k = 0 k=0 k=0时,也就是挑选的 4 4 4个景点必须都相邻,直接通过 d f s dfs dfs搜索所有的情况,如果遍历到了家( 1 1 1号点)并且已经路过了 4 4 4个不同的节点,这就是一条可行的路径,可以更新答案。 k = 0 k=0 k=0共有 9 9 9个测试点,共 45 45 45分。
cpp
#include <bits/stdc++.h>
#define A 2510
using namespace std;
int n, m, k, a[A], ans;
bool vis[A], mp[A][A];
void dfs(int now, int sum, int left) {
if (now == 1 and left == 0) {
ans = max(ans, sum);
return;
}
else if (left == 0) return;
for (int i = 1; i <= n; i++) {
if (!mp[now][i] or vis[i]) continue;
vis[i] = 1;
dfs(i, sum + a[i], left - 1);
vis[i] = 0;
}
}
int main() {
cin >> n >> m >> k;
for (int i = 2; i <= n; i++) cin >> a[i];
while (m--) {
int x, y;
cin >> x >> y;
mp[x][y] = 1; mp[y][x] = 1;
}
dfs(1, 0, 5);
cout << ans << endl;
}
这个写法可以通过 k = 0 k=0 k=0的所有特殊情况,和第一个暴力结合一下,可以拿到 70 70 70分。
cpp
#include <bits/stdc++.h>
#define A 2510
using namespace std;
typedef long long ll;
int n, m, kk, x, y, dis[A][A];
ll a[A], ans;
bool vis[A], mp[A][A];
void dfs(int now, ll sum, int left) {
if (now == 1 and left == 0) {
ans = max(ans, sum);
return;
}
else if (left == 0) return;
for (int i = 1; i <= n; i++) {
if (!mp[now][i] or vis[i]) continue;
vis[i] = 1;
dfs(i, sum + a[i], left - 1);
vis[i] = 0;
}
}
int main(int argc, char const *argv[]) {
scanf("%d%d%d", &n, &m, &kk);
if (kk == 0) {
for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);
while (m--) {
scanf("%d%d", &x, &y);
mp[x][y] = 1; mp[y][x] = 1;
}
dfs(1, 0, 5);
printf("%lld\n", ans);
return 0;
}
kk++;
for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);
memset(dis, 0x3f, sizeof dis);
for (int i = 1; i <= n; i++) dis[i][i] = 0;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
dis[x][y] = 1; dis[y][x] = 1;
}
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
for (int i = 2; i <= n; i++) {
if (dis[1][i] > kk) continue;
for (int j = 2; j <= n; j++) {
if (i == j) continue;
if (dis[i][j] > kk) continue;
for (int k = 2; k <= n; k++) {
if (i == k or j == k) continue;
if (dis[j][k] > kk) continue;
for (int l = 2; l <= n; l++) {
if (i == l or j == l or k == l) continue;
if (dis[k][l] > kk or dis[l][1] > kk) continue;
ans = max(ans, a[i] + a[j] + a[k] + a[l]);
}
}
}
}
printf("%lld\n", ans);
}
我们要找的一个路径是 1 → A → B → C → D → 1 1\to A\to B\to C\to D\to 1 1→A→B→C→D→1,可以发现其中 A A A和 D D D、 B B B和 C C C有一些共同之处: A A A和 D D D的两端一定是起点 1 1 1和一个其它的点,由于道路是双向的,所以可以说 A A A、 D D D这两个点是等价的; B B B和 D D D的两端一定是非起点,可以说 B B B、 C C C这两个点是等价的。这样一来中间不同的四个点被压缩成了两个点。
用一个双重循环枚举 A A A和 B B B, A A A、 B B B点的特征是 d i s [ 1 ] [ A ] < k dis[1][A]<k dis[1][A]<k且 d i s [ A ] [ B ] < k dis[A][B]<k dis[A][B]<k,同时满足条件的点 A A A也对应着点 D D D,点 B B B对应着点 C C C。对于所有的点 B B B,找到所有符合条件的点 A A A,符合条件的点 A A A可能有很多,我们只需要存值最大的三个就可以。
为什么是存三个点?
对于路径 1 → A → B → C → D → 1 1\to A\to B\to C\to D\to 1 1→A→B→C→D→1,假设枚举点 B B B时找到了点 j j j作为 A A A点,枚举点 C C C时找到了点 k k k作为 D D D点,那么 k = j k=j k=j、 k = B k=B k=B都是有可能发生的,所以要存三个点以防重复。
cpp
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define A 2510
vector<int> e[A];
ll dis[A][A], ans, a[A];
bool vis[A];
int n, m, k;
void bfs(int start) {
memset(vis, 0, sizeof vis); vis[start] = 1;
queue<int> q; q.push(start);
while (!q.empty()) {
int fr = q.front(); q.pop();
for (int i = 0; i < (int)e[fr].size(); i++) {
int ca = e[fr][i];
if (vis[ca]) continue;
vis[ca] = 1;
if (dis[start][ca] > dis[start][fr] + 1) {
dis[start][ca] = dis[start][fr] + 1;
q.push(ca);
}
}
}
}
set<pair<ll, int> > s[A];
int main(int argc, char const *argv[]) {
scanf("%d%d%d", &n, &m, &k); k++;
for (int i = 2; i <= n; i++) scanf("%lld", &a[i]);
while (m--) {
int x, y; scanf("%d%d", &x, &y);
e[x].push_back(y); e[y].push_back(x);
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
dis[i][j] = INT_MAX;
if (i == j) dis[i][j] = 0;
}
for (int i = 1; i <= n; i++) bfs(i);
for (int i = 2; i <= n; i++) {
for (int j = 2; j <= n; j++)
if (i != j and dis[j][i] <= k and dis[1][j] <= k) {
s[i].insert(make_pair(a[j], j));
if (s[i].size() > 3) s[i].erase(s[i].begin());
}
}
for (int i = 2; i <= n; i++)
for (int j = 2; j <= n; j++) {
if (dis[i][j] > k or i == j) continue;
for (auto k : s[i]) {
if (k.second == i or k.second == j) continue;
for (auto l : s[j]) {
if (l.second == i or l.second == j or l.second == k.second) continue;
ans = max(ans, a[i] + a[j] + a[l.second] + a[k.second]);
}
}
}
cout << ans << endl;
}