解决方案:梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees)有什么区别

文章目录


一、现象

在工作中,在机器学习中,时而会听到梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees,GBDT),会容易混淆,所以整理一下

二、解决方案

梯度提升树(Gradient Boosting Trees,GBT)和GBDT(Gradient Boosting Decision Trees)实际上指的是相同的算法,只是名称上的缩写略有不同。这两种称呼都代表了同一种机器学习技术,即通过迭代地训练决策树来逐步提升模型性能的方法。

梯度提升树(GBT)

GBT是梯度提升算法的一种实现,它使用决策树作为基学习器。在每次迭代中,GBT添加一个新的决策树来预测前一个模型的残差(即预测值与实际值之间的差异)。这个过程一直持续,直到达到预定的树的数量或者模型的性能不再显著提升。

GBDT

GBDT是梯度提升树的一个更具体的称呼,强调了决策树(Decision Trees)的使用。它同样是一种梯度提升算法,通过逐步添加决策树来减少模型的预测误差。

相同点

  • 算法基础:两者都是基于梯度提升的算法,使用决策树作为基学习器。
  • 目标:两者都旨在通过迭代地添加树模型来最小化损失函数,提高预测的准确性。
  • 应用:两者都广泛应用于分类、回归、甚至排名和排序问题。

区别

  • 术语使用:GBT和GBDT在术语上略有不同,GBT可能更偏向于强调梯度提升的通用性,而GBDT则更明确指出了决策树的使用。
  • 侧重点:GBT可能在某些文献中用来泛指使用梯度提升方法的树模型,而GBDT则更侧重于决策树的应用。

在实际应用中,这两个术语通常可以互换使用,特别是在讨论算法的基本原理和实现时。重要的是理解背后的算法机制和如何应用它来解决具体的机器学习问题。

相关推荐
dyxal1 天前
决策树:让机器像人类一样做选择的“思维导图”
算法·决策树·机器学习
Jerryhut3 天前
sklearn函数总结十 —— 决策树
人工智能·决策树·sklearn
Blossom.1183 天前
基于时序大模型+强化学习的虚拟电厂储能调度系统:从负荷预测到收益最大化的实战闭环
运维·人工智能·python·决策树·机器学习·自动化·音视频
最晚的py4 天前
ID3,C4.5,CART对比
决策树·机器学习
free-elcmacom4 天前
机器学习进阶<13>基于Boosting集成算法的信用评分卡模型构建与对比分析
python·算法·机器学习·boosting
free-elcmacom5 天前
机器学习进阶<10>分类器集成:集成学习算法
python·算法·机器学习·集成学习
Blossom.1186 天前
基于MLOps+LLM的模型全生命周期自动化治理系统:从数据漂移到智能回滚的落地实践
运维·人工智能·学习·决策树·stable diffusion·自动化·音视频
Keep__Fighting8 天前
【机器学习:集成算法】
人工智能·算法·机器学习·pandas·集成学习·sklearn
Keep__Fighting11 天前
【机器学习:决策树】
人工智能·算法·决策树·机器学习·scikit-learn
Blossom.11811 天前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频