解决方案:梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees)有什么区别

文章目录


一、现象

在工作中,在机器学习中,时而会听到梯度提升树(Gradient Boosting Trees)跟GBDT(Gradient Boosting Decision Trees,GBDT),会容易混淆,所以整理一下

二、解决方案

梯度提升树(Gradient Boosting Trees,GBT)和GBDT(Gradient Boosting Decision Trees)实际上指的是相同的算法,只是名称上的缩写略有不同。这两种称呼都代表了同一种机器学习技术,即通过迭代地训练决策树来逐步提升模型性能的方法。

梯度提升树(GBT)

GBT是梯度提升算法的一种实现,它使用决策树作为基学习器。在每次迭代中,GBT添加一个新的决策树来预测前一个模型的残差(即预测值与实际值之间的差异)。这个过程一直持续,直到达到预定的树的数量或者模型的性能不再显著提升。

GBDT

GBDT是梯度提升树的一个更具体的称呼,强调了决策树(Decision Trees)的使用。它同样是一种梯度提升算法,通过逐步添加决策树来减少模型的预测误差。

相同点

  • 算法基础:两者都是基于梯度提升的算法,使用决策树作为基学习器。
  • 目标:两者都旨在通过迭代地添加树模型来最小化损失函数,提高预测的准确性。
  • 应用:两者都广泛应用于分类、回归、甚至排名和排序问题。

区别

  • 术语使用:GBT和GBDT在术语上略有不同,GBT可能更偏向于强调梯度提升的通用性,而GBDT则更明确指出了决策树的使用。
  • 侧重点:GBT可能在某些文献中用来泛指使用梯度提升方法的树模型,而GBDT则更侧重于决策树的应用。

在实际应用中,这两个术语通常可以互换使用,特别是在讨论算法的基本原理和实现时。重要的是理解背后的算法机制和如何应用它来解决具体的机器学习问题。

相关推荐
渡我白衣2 天前
AI 应用层革命(一)——软件的终结与智能体的崛起
人工智能·opencv·机器学习·语言模型·数据挖掘·人机交互·集成学习
Miraitowa_cheems2 天前
LeetCode算法日记 - Day 82: 环形子数组的最大和
java·数据结构·算法·leetcode·决策树·线性回归·深度优先
OG one.Z3 天前
06_决策树
算法·决策树·机器学习
文火冰糖的硅基工坊3 天前
[人工智能-大模型-69]:模型层技术 - 计算机处理问题的几大分支:数值型性问题、非数值型问题?
算法·决策树·机器学习
机器学习之心5 天前
未发表,三大创新!OCSSA-VMD-Transformer-Adaboost特征提取+编码器+集成学习轴承故障诊断
深度学习·transformer·集成学习·ocssa-vmd
Miraitowa_cheems5 天前
LeetCode算法日记 - Day 81: 最大子数组和
java·数据结构·算法·leetcode·决策树·职场和发展·深度优先
weixin_429630268 天前
实验二-决策树-葡萄酒
算法·决策树·机器学习
he___H8 天前
Kaggle机器学习初级的三种决策树
决策树·机器学习
Blossom.1189 天前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
minhuan9 天前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging