Go语言实现随机森林 (Random Forest)算法

在 Go 语言中实现随机森林(Random Forest)算法通常涉及以下几个步骤:

  1. 数据准备:将数据集分为训练集和测试集,确保数据格式适合算法使用。

  2. 决策树的构建:随机森林是由多个决策树构成的,首先需要实现一个单独的决策树。

  3. 随机抽样:从训练数据中随机抽样生成多个子集,分别用来训练每棵树。

  4. 投票机制:对于分类问题,通过各树的投票决定最终的预测结果;对于回归问题,计算各树预测值的平均值。

以下是一个简化的随机森林实现示例,主要关注结构和逻辑:

复制代码
package main

import (
	"fmt"
	"math/rand"
)

type DecisionTree struct {
	// 决策树相关参数
	// ...
}

type RandomForest struct {
	trees []*DecisionTree
	n     int // 树的数量
}

func (rf *RandomForest) Train(data [][]float64, labels []int) {
	for i := 0; i < rf.n; i++ {
		// 随机抽样
		sampleData, sampleLabels := bootstrapSample(data, labels)
		tree := &DecisionTree{}
		tree.Train(sampleData, sampleLabels)
		rf.trees = append(rf.trees, tree)
	}
}

func (rf *RandomForest) Predict(input []float64) int {
	votes := make(map[int]int)
	for _, tree := range rf.trees {
		prediction := tree.Predict(input)
		votes[prediction]++
	}
	// 投票机制
	var maxVote int
	var result int
	for label, vote := range votes {
		if vote > maxVote {
			maxVote = vote
			result = label
		}
	}
	return result
}

func bootstrapSample(data [][]float64, labels []int) ([][]float64, []int) {
	n := len(data)
	sampleData := make([][]float64, n)
	sampleLabels := make([]int, n)
	for i := 0; i < n; i++ {
		index := rand.Intn(n)
		sampleData[i] = data[index]
		sampleLabels[i] = labels[index]
	}
	return sampleData, sampleLabels
}

func (tree *DecisionTree) Train(data [][]float64, labels []int) {
	// 实现决策树训练逻辑
}

func (tree *DecisionTree) Predict(input []float64) int {
	// 实现决策树预测逻辑
	return 0 // 返回分类结果
}

func main() {
	rand.Seed(42) // 设置随机种子
	data := [][]float64{
		{1.0, 2.0},
		{2.0, 3.0},
		{3.0, 4.0},
		// 添加更多数据
	}
	labels := []int{0, 1, 0} // 示例标签

	rf := &RandomForest{n: 10} // 10棵树
	rf.Train(data, labels)

	input := []float64{2.5, 3.5}
	prediction := rf.Predict(input)
	fmt.Println("预测结果:", prediction)
}

注意事项

  • 上述示例代码是一个简化版,实际的决策树实现需要更复杂的逻辑,比如选择最佳分裂点、处理连续和离散特征等。
  • 需要引入更多的错误处理和性能优化。
  • 使用随机森林的库(如 GoML 等)可以提高效率和可靠性。
相关推荐
aini_lovee5 分钟前
基于 OpenCV 的模板匹配算法的 C 语言实现
c语言·opencv·算法
core5126 分钟前
EM 算法 (期望最大化):在迷雾中寻找真相
算法·em·期望最大化
CoovallyAIHub7 分钟前
YOLO11-4K:面向4K全景图像的高效实时检测框架,CVIP360数据集开源
深度学习·算法·计算机视觉
安_15 分钟前
java Arrays.sort 用的什么算法
java·算法·排序算法
蓝色汪洋15 分钟前
数字(加强版)
算法
源代码•宸16 分钟前
goframe框架签到系统项目开发(用户认证、基于 JWT 实现认证、携带access token获取用户信息)
服务器·开发语言·网络·分布式·后端·golang·jwt
进击的小头16 分钟前
02_嵌入式C与控制理论入门:自动控制理论核心概念拆解
c语言·单片机·算法
郝学胜-神的一滴17 分钟前
Linux 多线程编程:深入理解 `pthread_join` 函数
linux·开发语言·jvm·数据结构·c++·程序人生·算法
罗湖老棍子19 分钟前
瑞瑞的木板(洛谷P1334 )
c++·算法·优先队列·贪心·哈夫曼树
思成Codes26 分钟前
Gin路由:构建高效RESTful API
golang·restful·xcode·gin