Vision Transformer

按照往常我们的想法transformer,Bert等模型都只能用来做NLP的问题,很少有人能去想做CV的问题,但是Vit的出现,打破了常规的认识,让我们知道了其实NLP和CV是没有界限的,只是技术的落后,把我们的想法限制住了。

BERT模型的提出是用来做NLP的,通过BERT模型可以学习句子的语义,当然BERT的模型调用,输出有两个一个就是语义向量,另一个就是句子中所有token向量,那么语义向量是怎么表示的呢?BERT在进行句子编码时,会自动在句子头部添加[CLS],注意这个是不用我们自己添加的,[CLS]所表示的向量是整个句子的语义向量,很神奇吧!

那么在使用transformer怎么处理图片呢?或者怎么做目标检测的任务呢?

我们可以把图片进行分割,那么每一个图片的像素点其实可以看做是像素矩阵,在通过encoder进行权重计算时可以形成该图像切片对应的向量(比如像素矩阵128*400乘以权重向量400*1,则变为了图像切片向量),当然该切片只表示原图片的一部分,我们可以使用position向量代表切片在原图片中的位置,将两个向量拼接(对应位置加运算)形成一个新等我向量作为切片向量。那么切片对应了token(单词),图片应该对应句子了吧!句子有语义向量,那应该不止切片有向量,图片也应该有吧,没错下图0号位置表示的就是图片向量,和[CLS]很相似。

所以NLP的问题解决方案也可以推广到CV

相关推荐
工藤学编程2 分钟前
零基础学AI大模型之LangChain智能体执行引擎AgentExecutor
人工智能·langchain
图生生6 分钟前
基于AI的商品场景图批量生成方案,助力电商大促效率翻倍
人工智能·ai
说私域8 分钟前
短视频私域流量池的变现路径创新:基于AI智能名片链动2+1模式S2B2C商城小程序的实践研究
大数据·人工智能·小程序
yugi98783811 分钟前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi14 分钟前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗19 分钟前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS20 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
韩师傅26 分钟前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
AI大佬的小弟28 分钟前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
lambo mercy34 分钟前
无监督学习
人工智能·深度学习