Vision Transformer

按照往常我们的想法transformer,Bert等模型都只能用来做NLP的问题,很少有人能去想做CV的问题,但是Vit的出现,打破了常规的认识,让我们知道了其实NLP和CV是没有界限的,只是技术的落后,把我们的想法限制住了。

BERT模型的提出是用来做NLP的,通过BERT模型可以学习句子的语义,当然BERT的模型调用,输出有两个一个就是语义向量,另一个就是句子中所有token向量,那么语义向量是怎么表示的呢?BERT在进行句子编码时,会自动在句子头部添加[CLS],注意这个是不用我们自己添加的,[CLS]所表示的向量是整个句子的语义向量,很神奇吧!

那么在使用transformer怎么处理图片呢?或者怎么做目标检测的任务呢?

我们可以把图片进行分割,那么每一个图片的像素点其实可以看做是像素矩阵,在通过encoder进行权重计算时可以形成该图像切片对应的向量(比如像素矩阵128*400乘以权重向量400*1,则变为了图像切片向量),当然该切片只表示原图片的一部分,我们可以使用position向量代表切片在原图片中的位置,将两个向量拼接(对应位置加运算)形成一个新等我向量作为切片向量。那么切片对应了token(单词),图片应该对应句子了吧!句子有语义向量,那应该不止切片有向量,图片也应该有吧,没错下图0号位置表示的就是图片向量,和[CLS]很相似。

所以NLP的问题解决方案也可以推广到CV

相关推荐
lambo mercy3 分钟前
自回归生成任务
人工智能·数据挖掘·回归
5Gcamera10 分钟前
边缘计算视频分析智能AI盒子使用说明
人工智能·音视频·边缘计算
hg011812 分钟前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
线束线缆组件品替网20 分钟前
IO Audio Technologies 音频线缆抗干扰与带宽设计要点
网络·人工智能·汽车·电脑·音视频·材料工程
Hcoco_me35 分钟前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto1 小时前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙1 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错1 小时前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.1 小时前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务
core5121 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数