Vision Transformer

按照往常我们的想法transformer,Bert等模型都只能用来做NLP的问题,很少有人能去想做CV的问题,但是Vit的出现,打破了常规的认识,让我们知道了其实NLP和CV是没有界限的,只是技术的落后,把我们的想法限制住了。

BERT模型的提出是用来做NLP的,通过BERT模型可以学习句子的语义,当然BERT的模型调用,输出有两个一个就是语义向量,另一个就是句子中所有token向量,那么语义向量是怎么表示的呢?BERT在进行句子编码时,会自动在句子头部添加[CLS],注意这个是不用我们自己添加的,[CLS]所表示的向量是整个句子的语义向量,很神奇吧!

那么在使用transformer怎么处理图片呢?或者怎么做目标检测的任务呢?

我们可以把图片进行分割,那么每一个图片的像素点其实可以看做是像素矩阵,在通过encoder进行权重计算时可以形成该图像切片对应的向量(比如像素矩阵128*400乘以权重向量400*1,则变为了图像切片向量),当然该切片只表示原图片的一部分,我们可以使用position向量代表切片在原图片中的位置,将两个向量拼接(对应位置加运算)形成一个新等我向量作为切片向量。那么切片对应了token(单词),图片应该对应句子了吧!句子有语义向量,那应该不止切片有向量,图片也应该有吧,没错下图0号位置表示的就是图片向量,和[CLS]很相似。

所以NLP的问题解决方案也可以推广到CV

相关推荐
琅琊榜首20206 分钟前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie15 分钟前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里38 分钟前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉
春日见1 小时前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术1 小时前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
hjs_deeplearning1 小时前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy1 小时前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
副露のmagic2 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc2 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
代码丰2 小时前
SpringAI+RAG向量库+知识图谱+多模型路由+Docker打造SmartHR智能招聘助手
人工智能·spring·知识图谱