Vision Transformer

按照往常我们的想法transformer,Bert等模型都只能用来做NLP的问题,很少有人能去想做CV的问题,但是Vit的出现,打破了常规的认识,让我们知道了其实NLP和CV是没有界限的,只是技术的落后,把我们的想法限制住了。

BERT模型的提出是用来做NLP的,通过BERT模型可以学习句子的语义,当然BERT的模型调用,输出有两个一个就是语义向量,另一个就是句子中所有token向量,那么语义向量是怎么表示的呢?BERT在进行句子编码时,会自动在句子头部添加[CLS],注意这个是不用我们自己添加的,[CLS]所表示的向量是整个句子的语义向量,很神奇吧!

那么在使用transformer怎么处理图片呢?或者怎么做目标检测的任务呢?

我们可以把图片进行分割,那么每一个图片的像素点其实可以看做是像素矩阵,在通过encoder进行权重计算时可以形成该图像切片对应的向量(比如像素矩阵128*400乘以权重向量400*1,则变为了图像切片向量),当然该切片只表示原图片的一部分,我们可以使用position向量代表切片在原图片中的位置,将两个向量拼接(对应位置加运算)形成一个新等我向量作为切片向量。那么切片对应了token(单词),图片应该对应句子了吧!句子有语义向量,那应该不止切片有向量,图片也应该有吧,没错下图0号位置表示的就是图片向量,和[CLS]很相似。

所以NLP的问题解决方案也可以推广到CV

相关推荐
武子康几秒前
大语言模型 09 - 从0开始训练GPT 0.25B参数量 补充知识之数据集 Pretrain SFT RLHF
人工智能·gpt·ai·语言模型·自然语言处理
davysiao13 分钟前
AG-UI 协议:重构多模态交互,开启智能应用新纪元
人工智能
沃洛德.辛肯15 分钟前
PyTorch 的 F.scaled_dot_product_attention 返回Nan
人工智能·pytorch·python
charles_vaez32 分钟前
开源模型应用落地-模型上下文协议(MCP)-Resources-资源的使用逻辑
深度学习·语言模型·自然语言处理·开源
sy_cora40 分钟前
IEEE 列表会议第五届机器人、自动化与智能控制国际会议
运维·人工智能·机器人·自动化
吹风看太阳44 分钟前
机器学习08-损失函数
人工智能·机器学习
m0_740154671 小时前
《k-means 散点图可视化》实验报告
人工智能·机器学习·kmeans
zhz52141 小时前
AI数字人融合VR全景:开启未来营销与交互新篇章
人工智能·ai·交互·vr·ai编程·智能体
智源研究院官方账号1 小时前
智源联合南开大学开源Chinese-LiPS中文多模态语音识别数据集
人工智能·语音识别
Thomas_YXQ1 小时前
Unity3D Overdraw性能优化详解
开发语言·人工智能·性能优化·unity3d