【进阶OpenCV】 (5)--指纹验证

文章目录

  • 指纹验证
    • [1. 验证原理](#1. 验证原理)
    • [2. 读取图片](#2. 读取图片)
    • [3. 计算特征匹配点](#3. 计算特征匹配点)
  • 总结

指纹验证

指纹验证基于人类指纹的独特性和稳定性。每个人的指纹在图案、断点和交叉点上各不相同,这种唯一性和终生不变性使得指纹成为身份验证的可靠手段。指纹识别技术通过采集和分析指纹图像,提取指纹特征,并与预先存储的指纹特征进行比对,从而确认身份。

1. 验证原理

通过对比两个指纹之间的相似度,来确认两者是否匹配。其中,确认相似度是通过计算两个指纹之间的关键特征点数量,若是关键特征点数量匹配超过某个设定值,我们则认为他们是一个人的。

2. 读取图片

python 复制代码
import cv2
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)   
python 复制代码
if __name__ == '__main__':
    src1 = cv2.imread("zw1.bmp")
    cv_show("zw1",src1)
    src2 = cv2.imread("zw2.bmp")
    cv_show("zw2", src2)
    model = cv2.imread("model.bmp")
    cv_show("model",model)

3. 计算特征匹配点

通过SIFT特征提取方法,计算两者之间的特征匹配点数量,若是数量达到设定值(此处设定为500),则认证通过,反之,认证失败。

python 复制代码
def verification(src,model):
    # 创建SIFT特征提取器
    sift = cv2.SIFT_create()
    # 检测关键点和计算描述符(特征向量) 源图像
    kp1,des1 = sift.detectAndCompute(src,None)
    # 检测关键点和计算描述符  模板图像
    kp2, des2 = sift.detectAndCompute(model, None)
    # 创建FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    # 使用K近邻匹配(des1中的每个描述符与des2中的最近两个描述符进行匹配)
    matches = flann.knnMatch(des1,des2,k=2)

    ok = []
    for m,n in matches:
        # 根据Lowe's比率测试,选择最佳匹配
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    # 统计通过筛选的匹配数量
    num = len(ok)
    if num >= 500:
        result = "认证通过"
    else:
        result = "认证失败"
    return result
python 复制代码
result1 = verification(src1,model)
result2 = verification(src2,model)
print("src1验证结果为:",result1)
print("src2验证结果为:", result2)
----------------
src1验证结果为: 认证通过
src2验证结果为: 认证失败

总结

本篇介绍了,通过使用SIFT特征特征提取方法,统计两者之间的特征匹配点数量,来验证指纹是否匹配。

相关推荐
SEO_juper29 分钟前
大型语言模型SEO(LLM SEO)完全手册:驾驭搜索新范式
人工智能·语言模型·自然语言处理·chatgpt·llm·seo·数字营销
攻城狮7号1 小时前
腾讯混元翻译模型Hunyuan-MT-7B开源,先前拿了30个冠军
人工智能·hunyuan-mt-7b·腾讯混元翻译模型·30个冠军
zezexihaha1 小时前
从“帮写文案”到“管生活”:个人AI工具的边界在哪?
人工智能
算家云1 小时前
nano banana官方最强Prompt模板来了!六大场景模板详解
人工智能·谷歌·ai大模型·算家云·ai生图·租算力,到算家云·nano banana 提示词
暴躁的大熊1 小时前
AI助力决策:告别生活与工作中的纠结,明析抉择引领明智选择
人工智能
Gyoku Mint1 小时前
提示词工程(Prompt Engineering)的崛起——为什么“会写Prompt”成了新技能?
人工智能·pytorch·深度学习·神经网络·语言模型·自然语言处理·nlp
AndrewHZ1 小时前
【图像处理基石】图像在频域处理和增强时,如何避免频谱混叠?
图像处理·计算机视觉·傅里叶分析·图像增强·频域处理·摩尔纹·频谱混叠
梁小憨憨1 小时前
zotero扩容
人工智能·笔记
大数据张老师2 小时前
AI架构师的思维方式与架构设计原则
人工智能·架构师·ai架构·后端架构
AKAMAI2 小时前
Entity Digital Sports 降低成本并快速扩展
人工智能·云计算