微调大语言模型——超详细步骤

微调一个语言模型,其实就是在一个已经训练过的模型上,继续用新数据进行训练,帮助模型更好地理解和处理这个新的任务。可以把这个过程想象成教一个已经懂很多道理的人去解决新的问题。

这个过程可以分为五个简单的步骤:

  1. 加载预训练模型和新的数据集:先拿到一个已经训练过的模型,它已经掌握了一些基础能力。然后,再准备一个新的数据集,这个数据包含你希望模型学会的新任务,比如解数学题的训练数据。

  2. 预处理模型和数据集:把数据整理成模型能理解的格式,比如把数学题和答案编码成数字。模型只能理解特定格式的数据,所以需要先做这一步。

  3. 开始循环训练:训练模型时,它会一遍遍看新数据,慢慢学会解决这些问题。通过训练过程,模型会逐渐调整自己的参数,更好地回答问题。

  4. 测试模型:一旦模型完成了训练,你可以用它从未见过的测试数据来检查它的表现。测试数据跟训练数据不同,是用来验证模型是否真的学会了这个新任务。

  5. 评估模型:在测试后,使用一些评价指标来量化模型的表现。比如我们可以通过正确率、准确率等方法来评估它是不是能够很好地解答数学题。

就是例如我已经有一个已经学会了日常对话的AI工具人,现在如果想教它解数学题,学习数学。首先,我得下载这个AI助手的模型,然后又要给它准备一套数学题和答案(新数据集)。接着,你把这些题目整理成它能读懂的格式,最后让它一遍又一遍地看和学习这些题目和答案,通过反复练习,逐渐让它变得擅长解数学题。

然后比如我要做的这个让他学习数学,然后使用了以下这个数据集

相关推荐
腾讯云开发者1 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗1 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper1 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_2 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信2 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235862 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs2 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习
董董灿是个攻城狮2 小时前
AI 视觉连载2:灰度图
人工智能
yunfuuwqi3 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云