【Linux】信号知识三把斧——信号的产生、保存和处理

目录​​​​​​​

1、关于信号的前置知识

1.1.什么是信号?

1.2.为什么要学习信号?

1.3.如何学习信号?

1.4.一些常见的信号

1.5.信号的处理方式

1.6.为什么每一个进程都可以系统调用?

2.信号的产生

2.1.kill命令产生信号

2.2.键盘产生信号

CTRL+c和CTRL+\的区别

2.3.调用系统函数向进程发信号

2.4.软件条件产生信号

2.5.异常产生信号(硬件异常)

2.6.信号产生的小总结

3.信号的保存

3.1三张表基础

阻塞vs忽略:

3.2三张表匹配的操作和系统调用

3.3.Core和Term

如何打开Linux的core功能呢?

为什么要用核心转储功能呢?

4.信号的处理

4.1.信号什么时候被处理的?

4.2.信号是如何被处理的?

4.3.volatile

1、关于信号的前置知识

1.1.什么是信号?

Linux系统提供的让用户(进程)给其他进程发送异步信息的一种方式。(注意信号和信号量这两者没有任何关系!)

举个例子:

用户输入命令,在Shell下启动一个前台进程。用户按下 Ctrl-C ,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程前台进程因为收到信号,进而引起进程退出~

进程就是你,操作系统就是快递员,信号就是快递

1.2.为什么要学习信号?

我们平时在处理进程的时候,对于停止、删除进程等操作,系统要求进程要有随时响应外部信号的能力,随后做出反应

1.3.如何学习信号?

根据进程对于整体信号的操作过程进行学习。

  1. 信号的产生(kill命令和键盘产生信号)
  2. 信号的保存
  3. 信号的处理

1.4.一些常见的信号

用kill -l命令可以察看系统定义的信号列表

数组和名字都可以标识一个信号,名字其实就是宏,注意没有信号0,没有信号32和33

1.5.信号的处理方式

  • 信号自己的默认动作
  • 自定义处理信号,捕捉信号
  • 忽略信号,忽略也代表处理过信号了

所以我们自己是可以更改对信号的处理方式。

1.6.为什么每一个进程都可以系统调用?

写时拷贝的时候拷贝的全部都是用户空间,不会拷贝内核空间

每一个进程都有自己的地址空间,多个进程就会有多个地址空间,但是内核空间只有一份。所以任何一个进程都可以系统调用

2.信号的产生

2.1.kill命令产生信号

当我们输入kill命令去给进程发送信号的时候,本质是OS进行操作的。

2.2.键盘产生信号

键盘如何产生信号呢?

常见的有CTRL+c,代表中断这个程序;CTRL+ \发送SIGQUIT信号给当前进程,导致该进程退出并生成core转储文件

CTRL+c和CTRL+\的区别

CTRL+\与Ctrl+C不同,后者只是发送SIGINT信号给当前正在运行的进程,导致进程被终止。Ctrl+\会生成core文件,这个文件包含了进程在退出时的内存映像,可以用于调试。如果进程成功生成core文件,那么可以使用调试工具来分析这个文件,以了解进程崩溃时的状态,这对于排查问题非常有帮助‌。

2.3.调用系统函数向进程发信号

kill命令是调用kill函数实现的。kill函数可以给一个指定的进程发送指定的信号。raise函数可以给当前进程发送指定的信号(自己给自己发信号)。

  • kill函数对任意进程发送任意的信号
  • raise函数对自己发送任意信号

#include <signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

这两个函数都是成功返回0,错误返回-1

abort函数使当前进程接收到信号而异常终止

#include <stdlib.h>

void abort(void);

就像exit函数一样,abort函数总是会成功的,所以没有返回值。

2.4.软件条件产生信号

alarm函数 和SIGALRM信号就是由软件条件产生信号的代表

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

调用alarm函数可以设定一个闹钟,也就是告诉内核在seconds秒之后给当前进程发SIGALRM信号, 该信号的默认处理动

作是终止当前进程。

这个函数的返回值是0或者是以前设定的闹钟时间还余下的秒数。如果参数seconds值为0,表示取消以前设定的闹钟,函数的返回值仍然是以前设定的闹钟时间还余下的秒数

2.5.异常产生信号(硬件异常)

  • 代码除零产生异常
  • 野指针异常

硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。

例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。

再比如当前进程访问了非法内存地址,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。

注意寄存器只有一个,但是寄存器的数据可以有很多,我们把寄存器中的数据叫做:上下文数据!!!

2.6.信号产生的小总结

当信号产生的时候,如果进程在处理更加重要的事情,我们就暂时不能处理到来的信号,我们必须暂时要将到来的信号进行临时保存。

那么问题来了,我们将这些信号保存在哪里呢?------进程的PCB中

所以只有OS才有资格写入信号,如果用户也想写入信号,就必须使用OS提供的系统调用。因此,无论信号产生的方式有多少种,最终都是OS亲自动手将信号写入进程的!!!

3.信号的保存

3.1三张表基础

理论上来说我们用3张表就可以保存信号

  • 实际执行信号的处理动作称为信号递达(Delivery)
  • 信号从产生到递达之间的状态,称为信号未决(Pending)。
  • 进程可以选择阻塞 (Block )某个信号。
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
  • 注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。

阻塞vs忽略:

忽略是一种信号递达的方式。阻塞仅仅是不让指定信号进程递达

  • pending表比特位的位置,表示信号编号,比特位的内容,表示是否收到指定信号
  • block表的比特位的位置,表示信号编号,比特位的内容,表示是否阻塞该信号

下面这三张表需要我们横着读,最后一个handler表示对信号的处理方法

这三张表分别表示信号是否阻塞,信号是否接受到,信号的处理动作

所以我们看这张表的时候,不是竖着看,而是横着看每一个信号

3.2三张表匹配的操作和系统调用

block表对应的是sigprocmask函数

调用函数sigprocmask可以读取或更改进程的信号屏蔽字(阻塞信号集)。

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

返回值:若成功则为0,若出错则为-1

如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字。假设当前的信号屏蔽字为mask,下表说明了how参数的可选值。

pending表对应的是sigpending函数

#include <signal.h>

sigpending

读取当前进程的未决信号集,通过set参数传出。调用成功则返回0,出错则返回-1。

handler函数对应的是signal函数。

可以对指定的信号进行用户指定的信号处理。更改信号的处理方式。

下面是利用这几个函数进行编码,小试牛刀。

3.3.Core和Term

大多数信号的默认响应行为都是Core或者Term;

这两种信号都表示终止进程

区别:

  • Term就是普通的终止进程,之后没有其他动作。
  • Core不仅会终止进程,还会生成一个核心转储文件

为什么默认关闭核心转储功能?防止未知的core dump 一直在进行,导致服务器磁盘被打满,所以默认core是关闭的。

如何打开Linux的core功能呢?

使用ulimit -a查看当前资源限制的设定 ;

其中,第一行显示core文件的大小为0,即表示核心转储是被关闭的

通过ulimit -c size 命令来设置Core文件的大小(同时也是打开了核心转储

为什么要用核心转储功能呢?

想通过core定位到进程为什么退出,以及执行到哪行代码退出的

核心转储功能是什么?

将进程在内存中的核心数据(与调试有关)转储到磁盘中形成。

有什么用呢?

协助我们进行调试!

4.信号的处理

4.1.信号什么时候被处理的?

合适的时候,什么是合适的时候呢?进程从内核态(操作系统的状态,权限级别高),切换到用户态(你自己的状态)的时候,信号会被检测并处理

在信号处理的过程(捕捉)中,一共会有4次的状态切换(内核和用户态)

4.2.信号是如何被处理的?

我们使用系统调用或者访问系统数据,其实还是在进程的地址空间内进行切换的

进程无论如何被切换,总能找到OS,我们访问OS,本质就是通过我们的进程的地址空间进行访问

4.3.volatile

volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作

编译器正常处理是将flag的值从内存读取到CPU中进行处理

当前编译器做了一个优化,因为系统认为flag的值定义之后就没有改变,因此直接将内存里flag的值直接放在了CPU 的寄存器中,因此后面代码改变flag值的时候,是在内存当中改变的,CPU中的值不会改变,而程序读取数据是从CPU读取的,因此就会造成偏差,这时候就需要我们的volatile去修饰这个变量,默认从内存中读取!​​​​​​​

相关推荐
川石课堂软件测试几秒前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
pk_xz1234562 小时前
Shell 脚本中变量和字符串的入门介绍
linux·运维·服务器
小珑也要变强2 小时前
Linux之sed命令详解
linux·运维·服务器
Lary_Rock4 小时前
RK3576 LINUX RKNN SDK 测试
linux·运维·服务器
云飞云共享云桌面6 小时前
8位机械工程师如何共享一台图形工作站算力?
linux·服务器·网络
Peter_chq6 小时前
【操作系统】基于环形队列的生产消费模型
linux·c语言·开发语言·c++·后端
一坨阿亮7 小时前
Linux 使用中的问题
linux·运维
dsywws8 小时前
Linux学习笔记之vim入门
linux·笔记·学习
幺零九零零9 小时前
【C++】socket套接字编程
linux·服务器·网络·c++
wclass-zhengge9 小时前
Docker篇(Docker Compose)
运维·docker·容器