[C++]使用C++部署yolov11目标检测的tensorrt模型支持图片视频推理windows测试通过

官方框架:

https://github.com/ultralytics/ultralytics

yolov8官方最近推出yolov11框架,标志着目标检测又多了一个检测利器,于是尝试在windows下部署yolov11的tensorrt模型,并最终成功。

重要说明:安装环境视为最基础操作,博文不做环境具体步骤,可以百度查询对应安装步骤即可。

测试通过环境:

vs2019

windows 10 RTX2070 8G显存

cmake==3.24.3

cuda11.7.1+cudnn8.8.0

Tensorrt==8.6.1.6

opencv==4.8.0

anaconda3+python3.8

torch==1.9.0+cu111

ultralytics==8.3.3

部署过程:

部署最费时间是安装环境。首先确保自己电脑是win10或者win11并确保电脑有一块nvidia显卡。查看自己显卡就是打开任务管理器(win10是ctrl+alt+delete,win11是ctrl+shift+ESC),在性能里面查看,如下图

如果看到GPU0和GPU1等等表示有显卡,但是需要看到NVIDIA字样才能表示有独立显卡。其他是AMD显卡或者核心显卡,这些都是不能用于cuda的,也就是电脑不支持tensorrt加速和cuda使用的。

首先需要大家安装好VS2019或者VS2022,还有如下环境,由于安装包很多需要去官方搜索下载,需要自己安装,其中版本可以有区别,但是如果快速复现这个项目,最好安装位一致版本这样更快复现出项目。

cmake==3.24.3

cuda11.7.1+cudnn8.8.0

Tensorrt==8.6.1.6

opencv==4.8.0

anaconda3+python3.8

torch==1.9.0+cu111

假设大家安装好上面的环境。下面具体怎么部署,首先去yolov8官方仓库下载yolo11模型,这样下载yolo11n.pt

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt

然后将pt模型放进项目里面,切换自己安装好的yolov8环境里面并切换到项目目录,执行python export.py即可转换得到onnx模型,当然你也可以使用下面命令直接转换

yolo export model=yolo11n.pt format=onnx dynamic=False opset=12

得到onnx模型以后我们开始编译源码。

首先我们修改CMakeLists.txt文件,将源码里面opencv路径和tensorrt路径修改成自己路径

Find and include OpenCV

set(OpenCV_DIR "D:\\lufiles\\opencv480\\build\\x64\\vc16\\lib")

Set TensorRT path if not set in environment variables

set(TENSORRT_DIR "D:\\lufiles\\TensorRT-8.6.1.6")

然后执行

mkdir build

cd build

cmake ..

之后去build文件夹找到sln文件用vs打开它

然后选择x64 release,并选中ALL_BUILD右键单击选择生成

之后build\Release文件夹下面有个yolov11-tensorrt.exe生成。之后我们开始转换onnx模型到tensorrt模型,执行命令

trtexec --onnx=yolo11n.onnx --saveEngine=yolov10n.engine --fp16

稍等20多分钟后会自动生成yolo11n.engine文件,我们将yolo11n.engine复制到build\Release文件夹

下面我们开始测试图片

yolov11-tensorrt.exe yolo11n.engine "test.jpg"

然后测试视频

yolov11-tensorrt.exe yolo11n.engine "car.mp4"

特别注意:

  1. tensorrt模型依赖于硬件,所以不是通用的需要在电脑重新转换,否则可能无法使用;
  2. 如需要二次开发,需要读懂main.cpp代码,需要有一定c++基础才行,否则无法进行二次开发。

完整源码下载:

https://download.csdn.net/download/FL1623863129/89835270

相关推荐
BestSongC几秒前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
模型时代7 分钟前
Anthropic明确拒绝在Claude中加入广告功能
人工智能·microsoft
夕小瑶11 分钟前
OpenClaw、Moltbook爆火,算力如何48小时内扩到1900张卡
人工智能
一枕眠秋雨>o<13 分钟前
透视算力:cann-tools如何让AI性能调优从玄学走向科学
人工智能
那个村的李富贵26 分钟前
昇腾CANN跨行业实战:五大新领域AI落地案例深度解析
人工智能·aigc·cann
集简云-软件连接神器30 分钟前
技术实战:集简云语聚AI实现小红书私信接入AI大模型全流程解析
人工智能·小红书·ai客服
松☆30 分钟前
深入理解CANN:面向AI加速的异构计算架构
人工智能·架构
rainbow72424430 分钟前
无基础学AI的入门核心,从基础工具和理论开始学
人工智能
lxs-31 分钟前
CANN计算机视觉算子库ops-cv全面解析:图像处理与目标检测的高性能引擎
图像处理·目标检测·计算机视觉
子榆.34 分钟前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow