(14)MATLAB莱斯(Rician)衰落信道仿真4

文章目录


前言

本文通过将接收信号总功率设置为1,重写了莱斯衰落信道上接收信号幅度的理论PDF式。然后用MATLAB代码生成了在具有不同莱斯因子K的Ricean平坦衰落信道下接收到的信号样本,并计算了PDF的估计值。最终通过画图给出仿真结果。


一、改写莱斯分布概率密度函数的理论值

对于《(11)MATLAB莱斯(Rician)衰落信道仿真2》和《(13)MATLAB莱斯(Rician)衰落信道仿真3》中描述的一般莱斯过程,接收信号幅度的概率密度函数服从莱斯分布:

式中,I0()为第一类零阶修正贝塞尔函数。

另外,平坦莱斯衰落信道模型可以用Ω和K两个参数来描述。Ω为直射路径和反射路径的总功率:

K为直射路径与反射路径的功率比:

根据式(2)和式(3),莱斯衰落信道上接收信号幅度的理论PDF式(1)可改写如下:

下面使用该理论PDF式对莱斯衰落信道进行MATLAB建模仿真。

二、仿真代码

以下代码生成了在具有不同莱斯因子K的Ricean平坦衰落信道下接收到的信号样本。仿真中,假设直射路径和反射路径的总功率为1,即Ω = β^2 + 2σ^2 = 1。仿真结果将给出接收信号样本幅度的直方图。

代码如下:

c 复制代码
clc
close all
clear all

%% Simulate receieved signal samples due to Ricean flat-fading

K_factors = [0, 3, 7, 12, 20];                         % 莱斯因子K,直接设置线性值
colors = {'b', 'r', 'k', 'g', 'm'};
index = 1;                                             % 多条曲线的颜色索引
N = 1e5;                                               % 样本数
figure()
for K = K_factors                                      % 每个循环,对应一个莱斯因子K
    mu = sqrt(K/(2*(K+1)));                            % 均值
    sigma = sqrt(1/(2*(K+1)));                         % 标准差
    ric = mu + sigma.*randn(1,N) + 1j*(mu + sigma.*randn(1,N)); % 生成平均功率为1的莱斯衰落样本samples
    
    % 平均功率
    display(['Average power : ', num2str(mean(abs(ric).^2))]);

    [elements_number,bin] = hist(abs(ric),50);         % 使用samples估计PDF
    plot(bin,elements_number/trapz(bin,elements_number),[colors{index}, '*']);
    
    
    % 莱斯分布的PDF理论值
    x = 0: 0.05: 3;                                    % 莱斯随机变量
    Omega = 1;                                         % 总平均功率设为1
    z = 2*x*sqrt(K*(K+1 )/Omega);                      % 修正贝塞尔函数用
    I0_z = besseli(0,z);                               % 第一类零阶修正贝塞尔函数
    pdf = (2*x*(K+1)/Omega) .* exp(-K-(x.^2*(K+1)/Omega)) .* I0_z; % 莱斯分布的PDF理论式
    hold on;
    plot(x, pdf, colors{index},'LineWidth', 1.5);
    index = index + 1 ;
end
grid on;
title('莱斯分布随机变量的概率密度');
xlabel('随机变量x');
ylabel('概率密度pdf(x)');
legend('K=0估计值', 'K=0理论值', ...
       'K=3估计值', 'K=3理论值', ...
       'K=7估计值', 'K=7理论值', ...
       'K=12估计值', 'K=12理论值', ...
       'K=20估计值', 'K=20理论值');
xlim([0 3]);

三、仿真结果

仿真结果给出接收信号样本幅度的概率密度估计:

总结

至此,通过7篇文章分析了瑞利衰落信道和莱斯衰落信道的理论和MATLAB仿真:
(8)MATLAB瑞利衰落信道仿真1
(9)MATLAB瑞利衰落信道仿真2
(10)MATLAB莱斯(Rician)衰落信道仿真1
(11)MATLAB莱斯(Rician)衰落信道仿真2
(12)MATLAB莱斯(Rician)衰落信道仿真2补充:莱斯衰落信道与莱斯随机变量
(13)MATLAB莱斯(Rician)衰落信道仿真3
(14)MATLAB莱斯(Rician)衰落信道仿真4

瑞利分布和莱斯分布都是通过数学方法对信道模型的物理特性进行建模的。然而,一些实验数据并不能很好地符合这两种分布。因此,有必要寻找一种更通用的衰落分布,使其可以适应多种实测数据,这种分布就是Nakagami衰落分布。后续将对Nakagami衰落分布进行介绍,并给出MATLAB仿真代码。


相关推荐
码银几秒前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春4 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
福大大架构师每日一题6 分钟前
文心一言 VS 讯飞星火 VS chatgpt (396)-- 算法导论25.2 1题
算法·文心一言
uncle_ll12 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972012 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
在下不上天13 分钟前
Flume日志采集系统的部署,实现flume负载均衡,flume故障恢复
大数据·开发语言·python
SEVEN-YEARS16 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人20 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
EterNity_TiMe_21 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
cloud studio AI应用26 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云