(16)MATLAB仿真Nakagami-m分布1

文章目录


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征------形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

Nakagami分布的平均值为:

Nakagami分布的方差为:

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

c 复制代码
clear all
close all
clc

mu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samples

x = 0.01:0.01:3;

lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)
    m = mu(k);
    for n = 1:300
        P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));
    end
    plot(P,lineColors(k),'LineWidth', 1.5)
    legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:

(1)当m=1时,Nakagami等同于Rayleigh分布;

(2)当m=0.5时,为单边高斯分布;

(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;

(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


相关推荐
学步_技术26 分钟前
自动驾驶系列—自动驾驶车辆的姿态与定位:IMU数据在复杂环境中的关键作用
人工智能·自动驾驶·imu
hummhumm33 分钟前
第 10 章 - Go语言字符串操作
java·后端·python·sql·算法·golang·database
Jeffrey_oWang37 分钟前
软间隔支持向量机
算法·机器学习·支持向量机
开发者每周简报42 分钟前
当微软windows的记事本被AI加持
人工智能·windows·microsoft
沉下心来学鲁班44 分钟前
欺诈文本分类检测(十八):基于llama.cpp+CPU推理
人工智能·语言模型·分类·cpu·llama.cpp
新手小白勇闯新世界1 小时前
点云论文阅读-1-pointnet++
论文阅读·人工智能·深度学习·神经网络·计算机视觉
小菜日记^_^1 小时前
BEAGLE: Forensics of Deep Learning Backdoor Attack for Better Defense(论文阅读)
论文阅读·人工智能·深度学习·sp·ai安全·backdoor 后门攻击·安全四大
算法歌者1 小时前
[算法]入门1.矩阵转置
算法
用户8134411823611 小时前
分布式训练
算法
林开落L2 小时前
前缀和算法习题篇(上)
c++·算法·leetcode