(16)MATLAB仿真Nakagami-m分布1

文章目录


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征------形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

Nakagami分布的平均值为:

Nakagami分布的方差为:

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

c 复制代码
clear all
close all
clc

mu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samples

x = 0.01:0.01:3;

lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)
    m = mu(k);
    for n = 1:300
        P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));
    end
    plot(P,lineColors(k),'LineWidth', 1.5)
    legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:

(1)当m=1时,Nakagami等同于Rayleigh分布;

(2)当m=0.5时,为单边高斯分布;

(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;

(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


相关推荐
囊中之锥.几秒前
机器学习:认识随机森林
人工智能·随机森林·机器学习
百胜软件@百胜软件1 分钟前
CTO Wow Club 上海研讨会成功举办,百胜软件深度分享零售AI智能体实战之道
大数据·人工智能·零售
晨非辰2 分钟前
基于Win32 API控制台的贪吃蛇游戏:从设计到C语言实现详解
c语言·c++·人工智能·后端·python·深度学习·游戏
_w_z_j_2 分钟前
最小高度树
算法
Dingdangcat864 分钟前
基于RetinaNet的仙人掌品种识别与分类:Gymnocalycium与Mammillaria属10品种自动识别
人工智能·数据挖掘
ASD123asfadxv4 分钟前
柑橘果实表面病害与虫害智能检测与分类 YOLO11-Seg-GhostHGNetV2实现
人工智能·分类·数据挖掘
希艾席帝恩4 分钟前
数字孪生正在悄然改变交通管理方式
大数据·人工智能·数字孪生·数据可视化·数字化转型
大千AI助手4 分钟前
Kaldi:开源语音识别工具链的核心架构与技术演进
人工智能·机器学习·架构·开源·语音识别·kaldi·大千ai助手
龙腾AI白云4 分钟前
基于Tensorflow库的RNN模型预测实战Tensorflow库简介循环神经网络简介
人工智能·fastapi
free-elcmacom6 分钟前
深度学习<1>PyTorch与TensorFlow新特性深度解析
人工智能·pytorch·python·深度学习·tensorflow