(16)MATLAB仿真Nakagami-m分布1

文章目录


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征------形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

Nakagami分布的平均值为:

Nakagami分布的方差为:

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

c 复制代码
clear all
close all
clc

mu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samples

x = 0.01:0.01:3;

lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)
    m = mu(k);
    for n = 1:300
        P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));
    end
    plot(P,lineColors(k),'LineWidth', 1.5)
    legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:

(1)当m=1时,Nakagami等同于Rayleigh分布;

(2)当m=0.5时,为单边高斯分布;

(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;

(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


相关推荐
mit6.82416 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub16 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
黑岚樱梦16 小时前
代码随想录打卡day23:435.无重叠区间
算法
番石榴AI16 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
Kuo-Teng16 小时前
Leetcode438. 找到字符串中所有字母异位词
java·算法·leetcode
国产化创客16 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳200616 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)16 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路17 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶