(16)MATLAB仿真Nakagami-m分布1

文章目录


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征------形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

Nakagami分布的平均值为:

Nakagami分布的方差为:

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

c 复制代码
clear all
close all
clc

mu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samples

x = 0.01:0.01:3;

lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)
    m = mu(k);
    for n = 1:300
        P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));
    end
    plot(P,lineColors(k),'LineWidth', 1.5)
    legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:

(1)当m=1时,Nakagami等同于Rayleigh分布;

(2)当m=0.5时,为单边高斯分布;

(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;

(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


相关推荐
微盛AI企微管家2 分钟前
中小企业数字化转型卡在哪?选对AI工具+用好企业微信,人力成本直降70%
人工智能·企业微信
lingggggaaaa7 分钟前
小迪安全v2023学习笔记(七十八讲)—— 数据库安全&Redis&CouchDB&H2database&未授权&CVE
redis·笔记·学习·算法·安全·网络安全·couchdb
沧海一粟青草喂马21 分钟前
国产GEO工具哪家强?巨推集团、SEO研究协会网、业界科技三强对比
人工智能
小陈phd25 分钟前
高级RAG策略学习(六)——Contextual Chunk Headers(CCH)技术
人工智能·langchain
beot学AI30 分钟前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
pusue_the_sun32 分钟前
C语言强化训练(12)
c语言·开发语言·算法
小欣加油37 分钟前
leetcode 6 Z字形变化
c++·算法·leetcode·职场和发展
小白的高手之路40 分钟前
Matlab中的积分——函数int()和quadl()
matlab
西猫雷婶1 小时前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论