(16)MATLAB仿真Nakagami-m分布1

文章目录


前言

Nakagami衰落模型最初是由于该模型与短波电离层传播的经验结果相匹配而提出的。它还用于仿真来自多个干扰源的情况,因为多个独立且同分布(i.i.d)的瑞利分布随机变量的总和幅度服从Nakagami分布。Nakagami和Ricean衰落在接近其平均值时表现相似。

本文给出Nakagami衰落的概率密度函数,并给出MATLAB建模代码和仿真结果。


一、Nakagami分布

Nakagami分布或Nakagami-m分布与Gamma函数有关。Nakagami分布由两个参数表征------形状参数(m)和尺度参数(ω)。Nakagami分布的PDF由下式给出:

Nakagami分布的平均值为:

Nakagami分布的方差为:

接下来给出Nakagami分布PDF的MATLAB建模代码。

二、MATLAB建模代码

使用不同的形状参数m,尺度参数w = 1,代码如下:

c 复制代码
clear all
close all
clc

mu = 0.5:0.25:2;
w = 1;                  % shape and spread parameters to test
N = 1e6;                % Number of Samples

x = 0.01:0.01:3;

lineColors = ['r' ,'g' ,'b' ,'c' ,'m' ,'y' ,'k' ];       % line color arguments
legendString = cell(1 ,7); 
figure()
hold on;
grid on;
for k = 1:length(mu)
    m = mu(k);
    for n = 1:300
        P(n) = 2/gamma(m) * ((m/w)^m)*(x(n)^(2*m-1))* (exp(-m*x(n)^2/w));
    end
    plot(P,lineColors(k),'LineWidth', 1.5)
    legendString{k} = strcat('m=', num2str(mu(k)),', \omega=', num2str(w));
end
legend(legendString);
title('Nakagami-m - PDF ' );
xlabel('Parameter - y' );
ylabel('f_Y(y)' );

也可以设置不同的尺度参数重新建模仿真。

三、仿真结果画图

画图如下:

四、总结

由该仿真结果可以发现,因子m影响Nakagami分布概率密度函数的形状:

(1)当m=1时,Nakagami等同于Rayleigh分布;

(2)当m=0.5时,为单边高斯分布;

(3)当0.5<m<1时,概率密度函数拖尾大于Rayleigh分布的概率密度函数;

(4)当m>1时,概率密度函数拖尾的衰减速度比Rayleigh分布的要快,m取值越大,拖尾衰减越快,概率密度函数曲线越尖锐。

所以,随着m值取不同的值,Nakagami分布涵盖了单边高斯分布、Rayleigh分布和Ricean分布,这正是m称为形状参数的原因。

另外,也可以设置不同的尺度参数重新建模仿真,查看其对PDF曲线的影响。


相关推荐
羑悻的小杀马特2 小时前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
想跑步的小弱鸡5 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
guanshiyishi5 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash5 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
澳鹏Appen6 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
xyliiiiiL6 小时前
ZGC初步了解
java·jvm·算法
爱的叹息7 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
蹦蹦跳跳真可爱5897 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库7 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
独好紫罗兰7 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法