opencv级联分类器实现人脸识别

级联分类器(Cascade Classifier)是一种基于Haar特征的对象检测算法,首先需要手动的去训练自己的模型,如人脸识别官网有训练好的,可以直接拿来用
链接直达

官方代码示例:

python 复制代码
from __future__ import print_function
import cv2 as cv
import argparse


def detectAndDisplay(frame):
    frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    frame_gray = cv.equalizeHist(frame_gray)
    # -- 检测面部
    faces = face_cascade.detectMultiScale(frame_gray)
    for (x, y, w, h) in faces:
        center = (x + w // 2, y + h // 2)
        frame = cv.ellipse(frame, center, (w // 2, h // 2), 0, 0, 360, (255, 0, 255), 4)
        faceROI = frame_gray[y:y + h, x:x + w]
        # -- 在每张面部上检测眼睛
        eyes = eyes_cascade.detectMultiScale(faceROI)
        for (x2, y2, w2, h2) in eyes:
            eye_center = (x + x2 + w2 // 2, y + y2 + h2 // 2)
            radius = int(round((w2 + h2) * 0.25))
            frame = cv.circle(frame, eye_center, radius, (255, 0, 0), 4)
    cv.imshow('Capture - Face detection', frame)


parser = argparse.ArgumentParser(description='Code for Cascade Classifier tutorial.')
parser.add_argument('--face_cascade', help='Path to face cascade.', default='haarcascade_frontalface_alt.xml')
parser.add_argument('--eyes_cascade', help='Path to eyes cascade.', default='haarcascade_eye_tree_eyeglasses.xml')
parser.add_argument('--camera', help='Camera divide number.', type=int, default=0)
args = parser.parse_args()
face_cascade_name = args.face_cascade
eyes_cascade_name = args.eyes_cascade
face_cascade = cv.CascadeClassifier()
eyes_cascade = cv.CascadeClassifier()
# -- 1. 加载级联
if not face_cascade.load(cv.samples.findFile(face_cascade_name)):
    print('--(!)Error loading face cascade')
    exit(0)
if not eyes_cascade.load(cv.samples.findFile(eyes_cascade_name)):
    print('--(!)Error loading eyes cascade')
    exit(0)
camera_device = args.camera
# -- 2. 读取视频流
cap = cv.VideoCapture(camera_device)
if not cap.isOpened:
    print('--(!)Error opening video capture')
    exit(0)
while True:
    ret, frame = cap.read()
    if frame is None:
        print('--(!) No captured frame -- Break!')
        break
    detectAndDisplay(frame)
    if cv.waitKey(10) == 27:
        break
相关推荐
白-胖-子2 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手3 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
静心问道4 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.04 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12014 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师5 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen5 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域5 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序
Java樱木5 小时前
AI 编程工具 Trae 重要的升级。。。
人工智能
AntBlack5 小时前
从小不学好 ,影刀 + ddddocr 实现图片验证码认证自动化
后端·python·计算机视觉