【附源码】Python :打家劫舍

系列文章目录

Python 算法学习:打家劫舍问题


文章目录


一、算法需求

"打家劫舍"问题是一个经典的动态规划问题,通常用来描述一个小偷在一条街上偷窃房屋的场景。每间房屋都有一定数量的现金,小偷需要决定偷哪些房屋以最大化他的收益。但是,小偷面临一个限制:如果两间相邻的房屋在同一晚上被偷,那么防盗系统会触发报警。因此,小偷不能偷窃相邻的房屋。


二、解题思路

动态规划: 定义一个数组 dp,其中 dp[i] 表示到第 i 间房屋为止能偷到的最大金额。状态转移方程是 dp[i] = max(dp[i-1], dp[i-2] + nums[i]),表示可以选择偷当前房子(前提是不偷前一个房子)或者不偷当前房子(延续前一个房子的决策)。

贪心算法: 虽然不总是最优,但可以作为一种尝试。在每一步选择当前能获得的最大金额,而不考虑未来的房子。

递归: 通过递归函数模拟决策过程,考虑偷或不偷当前房子,并取两种选择中的最大值。

优化空间: 使用两个变量代替数组,减少空间复杂度。


三、具体方法+源码

方法1:动态规划(自底向上)

状态定义:dp[i] 表示到第 i 个房子为止能偷到的最大金额。

计算过程:

dp[0] = 2(只考虑第一个房子)

dp[1] = max(2, 7) = 7(考虑第一个和第二个房子)

dp[2] = max(7, 2+9) = 9(考虑第二个和第三个房子)

dp[3] = max(9, 7+3) = 10(考虑第三个和第四个房子)

dp[4] = max(10, 9+1) = 12(考虑第四个和第五个房子)

结果:12

代码如下:

python 复制代码
def rob1(nums):
    if not nums:
        return 0
    if len(nums) == 1:
        return nums[0]
    dp = [0] * len(nums)
    dp[0] = nums[0]
    dp[1] = max(nums[0], nums[1])
    for i in range(2, len(nums)):
        dp[i] = max(dp[i-1], dp[i-2] + nums[i])
    return dp[-1]

# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob1(nums))

方法2:动态规划(自顶向下)

计算过程:

从 rob(0) 开始

rob(1) = max(rob(2), rob(3)) = max(7, 9) = 9

rob(2) = max(rob(3), rob(4) + 2) = max(9, 10) = 10

rob(3) = max(rob(4), rob(5) + 3) = max(9, 12) = 12

rob(4) = max(rob(5), rob(6) + 1) = max(7, 12) = 12

结果:12

代码如下:

python 复制代码
def rob2(nums):
    memo = {}
    def rob(i):
        if i >= len(nums):
            return 0
        if i in memo:
            return memo[i]
        memo[i] = max(rob(i+1), nums[i] + rob(i+2))
        return memo[i]
    return rob(0)

# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob2(nums))

方法3:优化的动态规划

计算过程:

prev = 2, curr = 7

prev = 7, curr = 9

prev = 9, curr = 10

prev = 10, curr = 12

结果:12

代码如下:

python 复制代码
def rob3(nums):
    if not nums:
        return 0
    if len(nums) == 1:
        return nums[0]
    prev, curr = 0, 0
    for num in nums:
        prev, curr = curr, max(prev + num, curr)
    return curr

# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob3(nums))

方法4:递归

计算过程:

helper(0) = max(helper(1), helper(2) + 2) = max(7, 9) = 9

helper(1) = max(helper(2), helper(3) + 7) = max(9, 10) = 10

helper(2) = max(helper(3), helper(4) + 9) = max(10, 12) = 12

helper(3) = max(helper(4), helper(5) + 3) = max(9, 12) = 12

helper(4) = max(helper(5), 1) = 12

结果:12

代码如下:

python 复制代码
def rob4(nums):
    def helper(i):
        if i == len(nums):
            return 0
        if i == len(nums) - 1:
            return nums[i]
        return max(helper(i+1), nums[i] + helper(i+2))
    return helper(0)

# 测试
nums = [2, 7, 9, 3, 1]
print("最高金额:", rob4(nums))

总结

这个问题在算法学习中非常重要,因为它展示了如何使用动态规划解决具有重叠子问题和最优子结构特性的问题。它也常用于面试中,考察候选人对动态规划的理解和应用能力。

这个问题的变种也很多,比如考虑环形街道的情况,或者房屋之间的防盗系统有不同的触发条件等。

相关推荐
链上Sniper几秒前
NFT 市场开发:基于 Ethereum 和 IPFS 构建去中心化平台
开发语言·网络·架构·去中心化·区块链·php
生产队队长3 分钟前
项目练习:element ui 的icon放在button的右侧
开发语言·javascript·ui
404.Not Found9 分钟前
Day43 Python打卡训练营
开发语言·python
链上Sniper12 分钟前
区块链跨链通信:使用 Cosmos SDK 实现链间互操作
开发语言·网络·架构·区块链·php
油头少年_w15 分钟前
Python爬虫之数据提取
python
heart000_115 分钟前
Go语言基础知识总结(超详细整理)
开发语言·后端·golang
时之彼岸Φ21 分钟前
网络攻防技术十四:入侵检测与网络欺骗
开发语言·网络·php
程序员的世界你不懂29 分钟前
Appium+python自动化(九)- 定位元素工具
python·appium·自动化
Humbunklung39 分钟前
Rust 数据类型
开发语言·后端·rust
南玖yy40 分钟前
深入理解 x86 汇编中的重复前缀:REP、REPZ/REPE、REPNZ/REPNE(进阶详解版)
开发语言·网络·汇编·后端·算法·bochs