【数据分析】参数检验与非参数检验

参数检验和非参数检验是统计学中两种常见的假设检验方法,它们用于确定样本数据是否足以支持某个假设。

1. 参数检验

参数检验

  1. 定义:参数检验是在总体分布参数(如均值、方差)已知或假设已知的情况下进行的检验。
  2. 前提条件:要求数据服从正态分布或其他特定分布。
  3. 常见方法
    • t检验:用于比较两个独立样本的均值或一个样本的均值与总体均值。
    • 方差分析(ANOVA):用于比较三个或更多独立样本的均值。
    • 卡方检验:用于检验分类变量的独立性。
  4. 优点:在数据符合正态分布的情况下,参数检验的统计功效较高。
  5. 缺点:如果数据不满足正态分布,检验结果可能不准确。

2. 非参数检验

非参数检验

  1. 定义 :非参数检验不依赖于总体分布的具体形式,适用于数据分布未知或非正态分布的情况。

  2. 前提条件 :不需要数据服从特定的分布。

  3. 常见方法

  • 曼-惠特尼U检验:用于比较两个独立样本的中位数。
  • Wilcoxon符号秩检验:用于比较两个配对样本的中位数。
  • Kruskal-Wallis检验:用于比较三个或更多独立样本的中位数。
  • Mood的中位数检验:用于比较两个或更多独立样本的中位数。
  1. 优点:对数据的分布没有严格要求,适用于各种类型的数据。
  2. 缺点:统计功效通常低于参数检验,特别是当数据实际上符合正态分布时。

选择参数检验还是非参数检验,通常取决于数据的特性和研究问题的需求。如果数据量足够大且分布接近正态,参数检验可能是更好的选择。如果数据量小或分布未知,非参数检验可能更合适。

相关推荐
Wendy14417 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
拾光拾趣录7 小时前
括号生成算法
前端·算法
渣呵8 小时前
求不重叠区间总和最大值
算法
拾光拾趣录8 小时前
链表合并:双指针与递归
前端·javascript·算法
好易学·数据结构8 小时前
可视化图解算法56:岛屿数量
数据结构·算法·leetcode·力扣·回溯·牛客网
香蕉可乐荷包蛋9 小时前
AI算法之图像识别与分类
人工智能·学习·算法
chuxinweihui9 小时前
stack,queue,priority_queue的模拟实现及常用接口
算法
tomato099 小时前
河南萌新联赛2025第(一)场:河南工业大学(补题)
c++·算法
墨染点香10 小时前
LeetCode Hot100【5. 最长回文子串】
算法·leetcode·职场和发展
甄卷11 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法