【数据分析】参数检验与非参数检验

参数检验和非参数检验是统计学中两种常见的假设检验方法,它们用于确定样本数据是否足以支持某个假设。

1. 参数检验

参数检验

  1. 定义:参数检验是在总体分布参数(如均值、方差)已知或假设已知的情况下进行的检验。
  2. 前提条件:要求数据服从正态分布或其他特定分布。
  3. 常见方法
    • t检验:用于比较两个独立样本的均值或一个样本的均值与总体均值。
    • 方差分析(ANOVA):用于比较三个或更多独立样本的均值。
    • 卡方检验:用于检验分类变量的独立性。
  4. 优点:在数据符合正态分布的情况下,参数检验的统计功效较高。
  5. 缺点:如果数据不满足正态分布,检验结果可能不准确。

2. 非参数检验

非参数检验

  1. 定义 :非参数检验不依赖于总体分布的具体形式,适用于数据分布未知或非正态分布的情况。

  2. 前提条件 :不需要数据服从特定的分布。

  3. 常见方法

  • 曼-惠特尼U检验:用于比较两个独立样本的中位数。
  • Wilcoxon符号秩检验:用于比较两个配对样本的中位数。
  • Kruskal-Wallis检验:用于比较三个或更多独立样本的中位数。
  • Mood的中位数检验:用于比较两个或更多独立样本的中位数。
  1. 优点:对数据的分布没有严格要求,适用于各种类型的数据。
  2. 缺点:统计功效通常低于参数检验,特别是当数据实际上符合正态分布时。

选择参数检验还是非参数检验,通常取决于数据的特性和研究问题的需求。如果数据量足够大且分布接近正态,参数检验可能是更好的选择。如果数据量小或分布未知,非参数检验可能更合适。

相关推荐
想跑步的小弱鸡2 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL4 小时前
ZGC初步了解
java·jvm·算法
爱的叹息4 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰5 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空6 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
Start_Present6 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
请来次降维打击!!!6 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca6 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL6 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
DREAM.ZL6 小时前
基于python的电影数据分析及可视化系统
开发语言·python·数据分析