【数据分析】参数检验与非参数检验

参数检验和非参数检验是统计学中两种常见的假设检验方法,它们用于确定样本数据是否足以支持某个假设。

1. 参数检验

参数检验

  1. 定义:参数检验是在总体分布参数(如均值、方差)已知或假设已知的情况下进行的检验。
  2. 前提条件:要求数据服从正态分布或其他特定分布。
  3. 常见方法
    • t检验:用于比较两个独立样本的均值或一个样本的均值与总体均值。
    • 方差分析(ANOVA):用于比较三个或更多独立样本的均值。
    • 卡方检验:用于检验分类变量的独立性。
  4. 优点:在数据符合正态分布的情况下,参数检验的统计功效较高。
  5. 缺点:如果数据不满足正态分布,检验结果可能不准确。

2. 非参数检验

非参数检验

  1. 定义 :非参数检验不依赖于总体分布的具体形式,适用于数据分布未知或非正态分布的情况。

  2. 前提条件 :不需要数据服从特定的分布。

  3. 常见方法

  • 曼-惠特尼U检验:用于比较两个独立样本的中位数。
  • Wilcoxon符号秩检验:用于比较两个配对样本的中位数。
  • Kruskal-Wallis检验:用于比较三个或更多独立样本的中位数。
  • Mood的中位数检验:用于比较两个或更多独立样本的中位数。
  1. 优点:对数据的分布没有严格要求,适用于各种类型的数据。
  2. 缺点:统计功效通常低于参数检验,特别是当数据实际上符合正态分布时。

选择参数检验还是非参数检验,通常取决于数据的特性和研究问题的需求。如果数据量足够大且分布接近正态,参数检验可能是更好的选择。如果数据量小或分布未知,非参数检验可能更合适。

相关推荐
ゞ 正在缓冲99%…9 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong10 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
惊鸿.Jh29 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L30 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
碳基学AI36 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四39 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
独好紫罗兰1 小时前
洛谷题单3-P5718 【深基4.例2】找最小值-python-流程图重构
开发语言·python·算法
正脉科工 CAE仿真1 小时前
基于ANSYS 概率设计和APDL编程的结构可靠性设计分析
人工智能·python·算法
千鼎数字孪生-可视化1 小时前
3D模型给可视化大屏带来了哪些创新,都涉及到哪些技术栈。
ui·3d·信息可视化·数据分析
Dovis(誓平步青云)1 小时前
【数据结构】排序算法(中篇)·处理大数据的精妙
c语言·数据结构·算法·排序算法·学习方法