【数据分析】参数检验与非参数检验

参数检验和非参数检验是统计学中两种常见的假设检验方法,它们用于确定样本数据是否足以支持某个假设。

1. 参数检验

参数检验

  1. 定义:参数检验是在总体分布参数(如均值、方差)已知或假设已知的情况下进行的检验。
  2. 前提条件:要求数据服从正态分布或其他特定分布。
  3. 常见方法
    • t检验:用于比较两个独立样本的均值或一个样本的均值与总体均值。
    • 方差分析(ANOVA):用于比较三个或更多独立样本的均值。
    • 卡方检验:用于检验分类变量的独立性。
  4. 优点:在数据符合正态分布的情况下,参数检验的统计功效较高。
  5. 缺点:如果数据不满足正态分布,检验结果可能不准确。

2. 非参数检验

非参数检验

  1. 定义 :非参数检验不依赖于总体分布的具体形式,适用于数据分布未知或非正态分布的情况。

  2. 前提条件 :不需要数据服从特定的分布。

  3. 常见方法

  • 曼-惠特尼U检验:用于比较两个独立样本的中位数。
  • Wilcoxon符号秩检验:用于比较两个配对样本的中位数。
  • Kruskal-Wallis检验:用于比较三个或更多独立样本的中位数。
  • Mood的中位数检验:用于比较两个或更多独立样本的中位数。
  1. 优点:对数据的分布没有严格要求,适用于各种类型的数据。
  2. 缺点:统计功效通常低于参数检验,特别是当数据实际上符合正态分布时。

选择参数检验还是非参数检验,通常取决于数据的特性和研究问题的需求。如果数据量足够大且分布接近正态,参数检验可能是更好的选择。如果数据量小或分布未知,非参数检验可能更合适。

相关推荐
迷途之人不知返42 分钟前
链表相关的算法题(2)
数据结构·算法·链表
nju_spy1 小时前
力扣每日一题(四)线段树 + 树状数组 + 差分
数据结构·python·算法·leetcode·面试·线段树·笔试
xie0510_1 小时前
排序算法
数据结构·算法·排序算法
guygg881 小时前
基于自适应傅里叶分解(AFD)及其改进算法的信号分解与重构实现
算法
黑岚樱梦1 小时前
代码随想录打卡day25:56.合并区间
数据结构·算法
自由生长20241 小时前
科普-BOM是什么?和UTF-8什么关系?
算法
小年糕是糕手1 小时前
【数据结构】常见的排序算法 -- 插入排序
c语言·开发语言·数据结构·学习·算法·leetcode·排序算法
泰迪智能科技2 小时前
分享|智能决策,精准增长:企业数据挖掘关键策略与应用全景
人工智能·数据挖掘
墨染点香2 小时前
LeetCode 刷题【142. 环形链表 II】
算法·leetcode·链表
海琴烟Sunshine2 小时前
leetcode 263. 丑数 python
python·算法·leetcode