spark的rdd介绍和应用

1.rdd介绍

  • RDD是spark的一种数据模型(规定数据的存储结构和计算方法)

  • RDD是将数据分布式存储在不同服务器的内存上,通过RDD共享不同服务器的内存数据

  • 所以Spark是基于内存进行分布式数据计算的框架

1.1 rdd特点

  • 分区

    • 可以将计算的海量数据分成多份,需要分成多少可分区可以通过方法指定

    • 每个分区都可以对应一个task线程执行计算

  • 只读

    • rdd中的数据不能直接修改,需要通过方法计算后得到一个新的rdd

    • rdd本身存储的数只能读取

  • 依赖

    • rdd之间是有依赖关系的

    • 新的rdd是通过旧的rdd计算得到

  • 缓存

    • 可以将计算的中结果缓存起来,如果后续计算错误时,可以从缓存位置重新计算

    • 将数据存储在内存或本地磁盘

    • 作用是容错

    • 缓存在执行计算任务程序结束后会释放删除

  • checkpoint

    • 作用和缓存一样

    • checkpoint可以将数据存储在分布式存储系统中,比如hdfs

2.rdd的应用

2.1创建rdd

复制代码
# 导入sparkcontext
from pyspark import SparkContext
# 创建SparkContext对象
sc = SparkContext()
# 将Python数据转为rdd
data_list = [1, 2, 3, 4]
rdd = sc.parallelize(data_list)
# rdd的数据输出展示
# 获取所有rdd数据
res = rdd.collect()
print(res)

2.2hdfs数据转为rdd

复制代码
# 将读取的hdfs文件数据转为rdd
from pyspark import SparkContext

# 生成SparkContext类对象
sc = SparkContext()
# 读取文件数据转为rdd
rdd  = sc.textFile('hdfs://node1:8020/data')#数据文件在hdfs的存储路径
# 查看数据
res = rdd.collect()
print(res)

2.3rdd的分区

复制代码
# 导入sparkcontext
from pyspark import SparkContext

# 创建SparkContext对象
sc = SparkContext()

# 创建生成rdd是可以指定分区数
# Python数据转为rdd指定
# numSlices 可以指定分区数
rdd_py = sc.parallelize([1,2,3,4,5,6],numSlices=3)
# 查看rdd分区数据
res  = rdd_py.glom().collect()
print(res)

2.4小文件数据读取

复制代码
# 导入sparkcontext
from pyspark import SparkContext

# 创建SparkContext对象
sc = SparkContext(master='yarn')
# rdd = sc.textFile('hdfs://node1:8020/data')
# rdd计算
# wholeTextFiles 会合并小文件数据
# minPartitions 指定分区数
rdd_mini = sc.wholeTextFiles('hdfs://node1:8020/data',minPartitions=1)

# 展示数据
# res1 = rdd.glom().collect()
# print(res1)

res2 = rdd_mini.glom().collect()
print(res2)
相关推荐
DeepVis Research1 小时前
【AGI/Simulation】2026年度通用人工智能图灵测试与高频博弈仿真基准索引 (Benchmark Index)
大数据·人工智能·算法·数据集·量化交易
Nemo_ZR1 小时前
Doris源码编译与开发环境搭建
大数据
阿里云大数据AI技术6 小时前
一站式构建 AI 数据处理 Pipeline:DataWorks Notebook + MaxCompute MaxFrame 快速入门指南
大数据·人工智能
阿里云大数据AI技术6 小时前
StarRocks + Paimon: 构建 Lakehouse Native 数据引擎
大数据·人工智能
下海fallsea7 小时前
韩国零食正在占领俄罗斯
大数据·人工智能
武汉唯众智创8 小时前
全国职业院校技能大赛大数据应用开发实训室建设方案
大数据·国赛·大数据应用开发·大数据实训室·全国职业院校技能大赛·大数据应用开发实训室·大数据应用开发实验室
媒体人8888 小时前
E-E-A-T²增强框架:AI时代GEO生成式引擎优化的信任破局之道
大数据·人工智能·搜索引擎·生成式引擎优化·geo优化
回家路上绕了弯10 小时前
熔断限流实战指南:分布式系统的稳定性守卫
分布式·后端
Albert Edison10 小时前
【Git】分支管理
大数据·git·elasticsearch
山峰哥11 小时前
SQL优化中的索引策略与Explain分析实战
大数据·汇编·数据库·sql·编辑器